-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathgeometry.py
578 lines (452 loc) · 13.9 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implements geometric objects used in the graph representation."""
from __future__ import annotations
from collections import defaultdict # pylint: disable=g-importing-member
from typing import Any, Type
# pylint: disable=protected-access
class Node:
r"""Node in the proof state graph.
Can be Point, Line, Circle, etc.
Each node maintains a merge history to
other nodes if they are (found out to be) equivalent
a -> b -
\
c -> d -> e -> f -> g
d.merged_to = e
d.rep = g
d.merged_from = {a, b, c, d}
d.equivs = {a, b, c, d, e, f, g}
"""
def __init__(self, name: str = '', graph: Any = None):
self.name = name or str(self)
self.graph = graph
self.edge_graph = {}
# Edge graph: what other nodes is connected to this node.
# edge graph = {
# other1: {self1: deps, self2: deps},
# other2: {self2: deps, self3: deps}
# }
self.merge_graph = {}
# Merge graph: history of merges with other nodes.
# merge_graph = {self1: {self2: deps1, self3: deps2}}
self.rep_by = None # represented by.
self.members = {self}
self._val = None
self._obj = None
self.deps = []
# numerical representation.
self.num = None
self.change = set() # what other nodes' num rely on this node?
def set_rep(self, node: Node) -> None:
if node == self:
return
self.rep_by = node
node.merge_edge_graph(self.edge_graph)
node.members.update(self.members)
def rep(self) -> Node:
x = self
while x.rep_by:
x = x.rep_by
return x
def why_rep(self) -> list[Any]:
return self.why_equal([self.rep()], None)
def rep_and_why(self) -> tuple[Node, list[Any]]:
rep = self.rep()
return rep, self.why_equal([rep], None)
def neighbors(
self, oftype: Type[Node], return_set: bool = False, do_rep: bool = True
) -> list[Node]:
"""Neighbors of this node in the proof state graph."""
if do_rep:
rep = self.rep()
else:
rep = self
result = set()
for n in rep.edge_graph:
if oftype is None or oftype and isinstance(n, oftype):
if do_rep:
result.add(n.rep())
else:
result.add(n)
if return_set:
return result
return list(result)
def merge_edge_graph(
self, new_edge_graph: dict[Node, dict[Node, list[Node]]]
) -> None:
for x, xdict in new_edge_graph.items():
if x in self.edge_graph:
self.edge_graph[x].update(dict(xdict))
else:
self.edge_graph[x] = dict(xdict)
def merge(self, nodes: list[Node], deps: list[Any]) -> None:
for node in nodes:
self.merge_one(node, deps)
def merge_one(self, node: Node, deps: list[Any]) -> None:
node.rep().set_rep(self.rep())
if node in self.merge_graph:
return
self.merge_graph[node] = deps
node.merge_graph[self] = deps
def is_val(self, node: Node) -> bool:
return (
isinstance(self, Line)
and isinstance(node, Direction)
or isinstance(self, Segment)
and isinstance(node, Length)
or isinstance(self, Angle)
and isinstance(node, Measure)
or isinstance(self, Ratio)
and isinstance(node, Value)
)
def set_val(self, node: Node) -> None:
self._val = node
def set_obj(self, node: Node) -> None:
self._obj = node
@property
def val(self) -> Node:
if self._val is None:
return None
return self._val.rep()
@property
def obj(self) -> Node:
if self._obj is None:
return None
return self._obj.rep()
def equivs(self) -> set[Node]:
return self.rep().members
def connect_to(self, node: Node, deps: list[Any] = None) -> None:
rep = self.rep()
if node in rep.edge_graph:
rep.edge_graph[node].update({self: deps})
else:
rep.edge_graph[node] = {self: deps}
if self.is_val(node):
self.set_val(node)
node.set_obj(self)
def equivs_upto(self, level: int) -> dict[Node, Node]:
"""What are the equivalent nodes up to a certain level."""
parent = {self: None}
visited = set()
queue = [self]
i = 0
while i < len(queue):
current = queue[i]
i += 1
visited.add(current)
for neighbor in current.merge_graph:
if (
level is not None
and current.merge_graph[neighbor].level is not None
and current.merge_graph[neighbor].level >= level
):
continue
if neighbor not in visited:
queue.append(neighbor)
parent[neighbor] = current
return parent
def why_equal(self, others: list[Node], level: int) -> list[Any]:
"""BFS why this node is equal to other nodes."""
others = set(others)
found = 0
parent = {}
queue = [self]
i = 0
while i < len(queue):
current = queue[i]
if current in others:
found += 1
if found == len(others):
break
i += 1
for neighbor in current.merge_graph:
if (
level is not None
and current.merge_graph[neighbor].level is not None
and current.merge_graph[neighbor].level >= level
):
continue
if neighbor not in parent:
queue.append(neighbor)
parent[neighbor] = current
return bfs_backtrack(self, others, parent)
def why_equal_groups(
self, groups: list[list[Node]], level: int
) -> tuple[list[Any], list[Node]]:
"""BFS for why self is equal to at least one member of each group."""
others = [None for _ in groups]
found = 0
parent = {}
queue = [self]
i = 0
while i < len(queue):
current = queue[i]
for j, grp in enumerate(groups):
if others[j] is None and current in grp:
others[j] = current
found += 1
if found == len(others):
break
i += 1
for neighbor in current.merge_graph:
if (
level is not None
and current.merge_graph[neighbor].level is not None
and current.merge_graph[neighbor].level >= level
):
continue
if neighbor not in parent:
queue.append(neighbor)
parent[neighbor] = current
return bfs_backtrack(self, others, parent), others
def why_val(self, level: int) -> list[Any]:
return self._val.why_equal([self.val], level)
def why_connect(self, node: Node, level: int = None) -> list[Any]:
rep = self.rep()
equivs = list(rep.edge_graph[node].keys())
if not equivs:
return None
equiv = equivs[0]
dep = rep.edge_graph[node][equiv]
return [dep] + self.why_equal(equiv, level)
def why_connect(*pairs: list[tuple[Node, Node]]) -> list[Any]:
result = []
for node1, node2 in pairs:
result += node1.why_connect(node2)
return result
def is_equiv(x: Node, y: Node, level: int = None) -> bool:
level = level or float('inf')
return x.why_equal([y], level) is not None
def is_equal(x: Node, y: Node, level: int = None) -> bool:
if x == y:
return True
if x._val is None or y._val is None:
return False
if x.val != y.val:
return False
return is_equiv(x._val, y._val, level)
def bfs_backtrack(
root: Node, leafs: list[Node], parent: dict[Node, Node]
) -> list[Any]:
"""Return the path given BFS trace of parent nodes."""
backtracked = {root} # no need to backtrack further when touching this set.
deps = []
for node in leafs:
if node is None:
return None
if node in backtracked:
continue
if node not in parent:
return None
while node not in backtracked:
backtracked.add(node)
deps.append(node.merge_graph[parent[node]])
node = parent[node]
return deps
class Point(Node):
pass
class Line(Node):
"""Node of type Line."""
def new_val(self) -> Direction:
return Direction()
def why_coll(self, points: list[Point], level: int = None) -> list[Any]:
"""Why points are connected to self."""
level = level or float('inf')
groups = []
for p in points:
group = [
l
for l, d in self.edge_graph[p].items()
if d is None or d.level < level
]
if not group:
return None
groups.append(group)
min_deps = None
for line in groups[0]:
deps, others = line.why_equal_groups(groups[1:], level)
if deps is None:
continue
for p, o in zip(points, [line] + others):
deps.append(self.edge_graph[p][o])
if min_deps is None or len(deps) < len(min_deps):
min_deps = deps
if min_deps is None:
return None
return [d for d in min_deps if d is not None]
class Segment(Node):
def new_val(self) -> Length:
return Length()
class Circle(Node):
"""Node of type Circle."""
def why_cyclic(self, points: list[Point], level: int = None) -> list[Any]:
"""Why points are connected to self."""
level = level or float('inf')
groups = []
for p in points:
group = [
c
for c, d in self.edge_graph[p].items()
if d is None or d.level < level
]
if not group:
return None
groups.append(group)
min_deps = None
for circle in groups[0]:
deps, others = circle.why_equal_groups(groups[1:], level)
if deps is None:
continue
for p, o in zip(points, [circle] + others):
deps.append(self.edge_graph[p][o])
if min_deps is None or len(deps) < len(min_deps):
min_deps = deps
if min_deps is None:
return None
return [d for d in min_deps if d is not None]
def why_equal(x: Node, y: Node, level: int = None) -> list[Any]:
if x == y:
return []
if not x._val or not y._val:
return None
if x._val == y._val:
return []
return x._val.why_equal([y._val], level)
class Direction(Node):
pass
def get_lines_thru_all(*points: list[Point]) -> list[Line]:
line2count = defaultdict(lambda: 0)
points = set(points)
for p in points:
for l in p.neighbors(Line):
line2count[l] += 1
return [l for l, count in line2count.items() if count == len(points)]
def line_of_and_why(
points: list[Point], level: int = None
) -> tuple[Line, list[Any]]:
"""Why points are collinear."""
for l0 in get_lines_thru_all(*points):
for l in l0.equivs():
if all([p in l.edge_graph for p in points]):
x, y = l.points
colls = list({x, y} | set(points))
# if len(colls) < 3:
# return l, []
why = l.why_coll(colls, level)
if why is not None:
return l, why
return None, None
def get_circles_thru_all(*points: list[Point]) -> list[Circle]:
circle2count = defaultdict(lambda: 0)
points = set(points)
for p in points:
for c in p.neighbors(Circle):
circle2count[c] += 1
return [c for c, count in circle2count.items() if count == len(points)]
def circle_of_and_why(
points: list[Point], level: int = None
) -> tuple[Circle, list[Any]]:
"""Why points are concyclic."""
for c0 in get_circles_thru_all(*points):
for c in c0.equivs():
if all([p in c.edge_graph for p in points]):
cycls = list(set(points))
why = c.why_cyclic(cycls, level)
if why is not None:
return c, why
return None, None
def name_map(struct: Any) -> Any:
if isinstance(struct, list):
return [name_map(x) for x in struct]
elif isinstance(struct, tuple):
return tuple([name_map(x) for x in struct])
elif isinstance(struct, set):
return set([name_map(x) for x in struct])
elif isinstance(struct, dict):
return {name_map(x): name_map(y) for x, y in struct.items()}
else:
return getattr(struct, 'name', '')
class Angle(Node):
"""Node of type Angle."""
def new_val(self) -> Measure:
return Measure()
def set_directions(self, d1: Direction, d2: Direction) -> None:
self._d = d1, d2
@property
def directions(self) -> tuple[Direction, Direction]:
d1, d2 = self._d
if d1 is None or d2 is None:
return d1, d2
return d1.rep(), d2.rep()
class Measure(Node):
pass
class Length(Node):
pass
class Ratio(Node):
"""Node of type Ratio."""
def new_val(self) -> Value:
return Value()
def set_lengths(self, l1: Length, l2: Length) -> None:
self._l = l1, l2
@property
def lengths(self) -> tuple[Length, Length]:
l1, l2 = self._l
if l1 is None or l2 is None:
return l1, l2
return l1.rep(), l2.rep()
class Value(Node):
pass
def all_angles(
d1: Direction, d2: Direction, level: int = None
) -> tuple[Angle, list[Direction], list[Direction]]:
level = level or float('inf')
d1s = d1.equivs_upto(level)
d2s = d2.equivs_upto(level)
for ang in d1.rep().neighbors(Angle):
d1_, d2_ = ang._d
if d1_ in d1s and d2_ in d2s:
yield ang, d1s, d2s
def all_ratios(
d1, d2, level=None
) -> tuple[Angle, list[Direction], list[Direction]]:
level = level or float('inf')
d1s = d1.equivs_upto(level)
d2s = d2.equivs_upto(level)
for ang in d1.rep().neighbors(Ratio):
d1_, d2_ = ang._l
if d1_ in d1s and d2_ in d2s:
yield ang, d1s, d2s
RANKING = {
Point: 0,
Line: 1,
Segment: 2,
Circle: 3,
Direction: 4,
Length: 5,
Angle: 6,
Ratio: 7,
Measure: 8,
Value: 9,
}
def val_type(x: Node) -> Type[Node]:
if isinstance(x, Line):
return Direction
if isinstance(x, Segment):
return Length
if isinstance(x, Angle):
return Measure
if isinstance(x, Ratio):
return Value