-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathddar.py
157 lines (126 loc) · 4.22 KB
/
ddar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implements the combination DD+AR."""
import time
from absl import logging
import dd
import graph as gh
import problem as pr
from problem import Dependency # pylint: disable=g-importing-member
import trace_back
def saturate_or_goal(
g: gh.Graph,
theorems: list[pr.Theorem],
level_times: list[float],
p: pr.Problem,
max_level: int = 100,
timeout: int = 600,
) -> tuple[
list[dict[str, list[tuple[gh.Point, ...]]]],
list[dict[str, list[tuple[gh.Point, ...]]]],
list[int],
list[pr.Dependency],
]:
"""Run DD until saturation or goal found."""
derives = []
eq4s = []
branching = []
all_added = []
while len(level_times) < max_level:
level = len(level_times) + 1
t = time.time()
added, derv, eq4, n_branching = dd.bfs_one_level(
g, theorems, level, p, verbose=False, nm_check=True, timeout=timeout
)
all_added += added
branching.append(n_branching)
derives.append(derv)
eq4s.append(eq4)
level_time = time.time() - t
logging.info(f'Depth {level}/{max_level} time = {level_time}') # pylint: disable=logging-fstring-interpolation
level_times.append(level_time)
if p.goal is not None:
goal_args = list(map(lambda x: g.get(x, lambda: int(x)), p.goal.args))
if g.check(p.goal.name, goal_args): # found goal
break
if not added: # saturated
break
if level_time > timeout:
break
return derives, eq4s, branching, all_added
def solve(
g: gh.Graph,
theorems: list[pr.Problem],
controller: pr.Problem,
max_level: int = 1000,
timeout: int = 600,
) -> tuple[gh.Graph, list[float], str, list[int], list[pr.Dependency]]:
"""Alternate between DD and AR until goal is found."""
status = 'saturated'
level_times = []
dervs, eq4 = g.derive_algebra(level=0, verbose=False)
derives = [dervs]
eq4s = [eq4]
branches = []
all_added = []
while len(level_times) < max_level:
dervs, eq4, next_branches, added = saturate_or_goal(
g, theorems, level_times, controller, max_level, timeout=timeout
)
all_added += added
derives += dervs
eq4s += eq4
branches += next_branches
# Now, it is either goal or saturated
if controller.goal is not None:
goal_args = g.names2points(controller.goal.args)
if g.check(controller.goal.name, goal_args): # found goal
status = 'solved'
break
if not derives: # officially saturated.
break
# Now we resort to algebra derivations.
added = []
while derives and not added:
added += dd.apply_derivations(g, derives.pop(0))
if added:
continue
# Final help from AR.
while eq4s and not added:
added += dd.apply_derivations(g, eq4s.pop(0))
all_added += added
if not added: # Nothing left. saturated.
break
return g, level_times, status, branches, all_added
def get_proof_steps(
g: gh.Graph, goal: pr.Clause, merge_trivials: bool = False
) -> tuple[
list[pr.Dependency],
list[pr.Dependency],
list[tuple[list[pr.Dependency], list[pr.Dependency]]],
dict[tuple[str, ...], int],
]:
"""Extract proof steps from the built DAG."""
goal_args = g.names2nodes(goal.args)
query = Dependency(goal.name, goal_args, None, None)
setup, aux, log, setup_points = trace_back.get_logs(
query, g, merge_trivials=merge_trivials
)
refs = {}
setup = trace_back.point_log(setup, refs, set())
aux = trace_back.point_log(aux, refs, setup_points)
setup = [(prems, [tuple(p)]) for p, prems in setup]
aux = [(prems, [tuple(p)]) for p, prems in aux]
return setup, aux, log, refs