-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathalphageometry.py
651 lines (525 loc) · 18.9 KB
/
alphageometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run DD+AR or AlphaGeometry solver.
Please refer to README.md for detailed instructions.
"""
import traceback
from absl import app
from absl import flags
from absl import logging
import ddar
import graph as gh
import lm_inference as lm
import pretty as pt
import problem as pr
_GIN_SEARCH_PATHS = flags.DEFINE_list(
'gin_search_paths',
['third_party/py/meliad/transformer/configs'],
'List of paths where the Gin config files are located.',
)
_GIN_FILE = flags.DEFINE_multi_string(
'gin_file', ['base_htrans.gin'], 'List of Gin config files.'
)
_GIN_PARAM = flags.DEFINE_multi_string(
'gin_param', None, 'Newline separated list of Gin parameter bindings.'
)
_PROBLEMS_FILE = flags.DEFINE_string(
'problems_file',
'imo_ag_30.txt',
'text file contains the problem strings. See imo_ag_30.txt for example.',
)
_PROBLEM_NAME = flags.DEFINE_string(
'problem_name',
'imo_2000_p1',
'name of the problem to solve, must be in the problem_file.',
)
_MODE = flags.DEFINE_string(
'mode', 'ddar', 'either `ddar` (DD+AR) or `alphageometry`')
_DEFS_FILE = flags.DEFINE_string(
'defs_file',
'defs.txt',
'definitions of available constructions to state a problem.',
)
_RULES_FILE = flags.DEFINE_string(
'rules_file', 'rules.txt', 'list of deduction rules used by DD.'
)
_CKPT_PATH = flags.DEFINE_string('ckpt_path', '', 'checkpoint of the LM model.')
_VOCAB_PATH = flags.DEFINE_string(
'vocab_path', '', 'path to the LM vocab file.'
)
_OUT_FILE = flags.DEFINE_string(
'out_file', '', 'path to the solution output file.'
) # pylint: disable=line-too-long
_BEAM_SIZE = flags.DEFINE_integer(
'beam_size', 1, 'beam size of the proof search.'
) # pylint: disable=line-too-long
_SEARCH_DEPTH = flags.DEFINE_integer(
'search_depth', 1, 'search depth of the proof search.'
) # pylint: disable=line-too-long
DEFINITIONS = None # contains definitions of construction actions
RULES = None # contains rules of deductions
def natural_language_statement(logical_statement: pr.Dependency) -> str:
"""Convert logical_statement to natural language.
Args:
logical_statement: pr.Dependency with .name and .args
Returns:
a string of (pseudo) natural language of the predicate for human reader.
"""
names = [a.name.upper() for a in logical_statement.args]
names = [(n[0] + '_' + n[1:]) if len(n) > 1 else n for n in names]
return pt.pretty_nl(logical_statement.name, names)
def proof_step_string(
proof_step: pr.Dependency, refs: dict[tuple[str, ...], int], last_step: bool
) -> str:
"""Translate proof to natural language.
Args:
proof_step: pr.Dependency with .name and .args
refs: dict(hash: int) to keep track of derived predicates
last_step: boolean to keep track whether this is the last step.
Returns:
a string of (pseudo) natural language of the proof step for human reader.
"""
premises, [conclusion] = proof_step
premises_nl = ' & '.join(
[
natural_language_statement(p) + ' [{:02}]'.format(refs[p.hashed()])
for p in premises
]
)
if not premises:
premises_nl = 'similarly'
refs[conclusion.hashed()] = len(refs)
conclusion_nl = natural_language_statement(conclusion)
if not last_step:
conclusion_nl += ' [{:02}]'.format(refs[conclusion.hashed()])
return f'{premises_nl} \u21d2 {conclusion_nl}'
def write_solution(g: gh.Graph, p: pr.Problem, out_file: str) -> None:
"""Output the solution to out_file.
Args:
g: gh.Graph object, containing the proof state.
p: pr.Problem object, containing the theorem.
out_file: file to write to, empty string to skip writing to file.
"""
setup, aux, proof_steps, refs = ddar.get_proof_steps(
g, p.goal, merge_trivials=False
)
solution = '\n=========================='
solution += '\n * From theorem premises:\n'
premises_nl = []
for premises, [points] in setup:
solution += ' '.join([p.name.upper() for p in points]) + ' '
if not premises:
continue
premises_nl += [
natural_language_statement(p) + ' [{:02}]'.format(refs[p.hashed()])
for p in premises
]
solution += ': Points\n' + '\n'.join(premises_nl)
solution += '\n\n * Auxiliary Constructions:\n'
aux_premises_nl = []
for premises, [points] in aux:
solution += ' '.join([p.name.upper() for p in points]) + ' '
aux_premises_nl += [
natural_language_statement(p) + ' [{:02}]'.format(refs[p.hashed()])
for p in premises
]
solution += ': Points\n' + '\n'.join(aux_premises_nl)
# some special case where the deduction rule has a well known name.
r2name = {
'r32': '(SSS)',
'r33': '(SAS)',
'r34': '(Similar Triangles)',
'r35': '(Similar Triangles)',
'r36': '(ASA)',
'r37': '(ASA)',
'r38': '(Similar Triangles)',
'r39': '(Similar Triangles)',
'r40': '(Congruent Triangles)',
'a00': '(Distance chase)',
'a01': '(Ratio chase)',
'a02': '(Angle chase)',
}
solution += '\n\n * Proof steps:\n'
for i, step in enumerate(proof_steps):
_, [con] = step
nl = proof_step_string(step, refs, last_step=i == len(proof_steps) - 1)
rule_name = r2name.get(con.rule_name, '')
nl = nl.replace('\u21d2', f'{rule_name}\u21d2 ')
solution += '{:03}. '.format(i + 1) + nl + '\n'
solution += '==========================\n'
logging.info(solution)
if out_file:
with open(out_file, 'w') as f:
f.write(solution)
logging.info('Solution written to %s.', out_file)
def get_lm(ckpt_init: str, vocab_path: str) -> lm.LanguageModelInference:
lm.parse_gin_configuration(
_GIN_FILE.value, _GIN_PARAM.value, gin_paths=_GIN_SEARCH_PATHS.value
)
return lm.LanguageModelInference(vocab_path, ckpt_init, mode='beam_search')
def run_ddar(g: gh.Graph, p: pr.Problem, out_file: str) -> bool:
"""Run DD+AR.
Args:
g: gh.Graph object, containing the proof state.
p: pr.Problem object, containing the problem statement.
out_file: path to output file if solution is found.
Returns:
Boolean, whether DD+AR finishes successfully.
"""
ddar.solve(g, RULES, p, max_level=1000)
goal_args = g.names2nodes(p.goal.args)
if not g.check(p.goal.name, goal_args):
logging.info('DD+AR failed to solve the problem.')
return False
write_solution(g, p, out_file)
gh.nm.draw(
g.type2nodes[gh.Point],
g.type2nodes[gh.Line],
g.type2nodes[gh.Circle],
g.type2nodes[gh.Segment])
return True
def translate_constrained_to_constructive(
point: str, name: str, args: list[str]
) -> tuple[str, list[str]]:
"""Translate a predicate from constraint-based to construction-based.
Args:
point: str: name of the new point
name: str: name of the predicate, e.g., perp, para, etc.
args: list[str]: list of predicate args.
Returns:
(name, args): translated to constructive predicate.
"""
if name in ['T', 'perp']:
a, b, c, d = args
if point in [c, d]:
a, b, c, d = c, d, a, b
if point == b:
a, b = b, a
if point == d:
c, d = d, c
if a == c and a == point:
return 'on_dia', [a, b, d]
return 'on_tline', [a, b, c, d]
elif name in ['P', 'para']:
a, b, c, d = args
if point in [c, d]:
a, b, c, d = c, d, a, b
if point == b:
a, b = b, a
return 'on_pline', [a, b, c, d]
elif name in ['D', 'cong']:
a, b, c, d = args
if point in [c, d]:
a, b, c, d = c, d, a, b
if point == b:
a, b = b, a
if point == d:
c, d = d, c
if a == c and a == point:
return 'on_bline', [a, b, d]
if b in [c, d]:
if b == d:
c, d = d, c # pylint: disable=unused-variable
return 'on_circle', [a, b, d]
return 'eqdistance', [a, b, c, d]
elif name in ['C', 'coll']:
a, b, c = args
if point == b:
a, b = b, a
if point == c:
a, b, c = c, a, b
return 'on_line', [a, b, c]
elif name in ['^', 'eqangle']:
a, b, c, d, e, f = args
if point in [d, e, f]:
a, b, c, d, e, f = d, e, f, a, b, c
x, b, y, c, d = b, c, e, d, f
if point == b:
a, b, c, d = b, a, d, c
if point == d and x == y: # x p x b = x c x p
return 'angle_bisector', [point, b, x, c]
if point == x:
return 'eqangle3', [x, a, b, y, c, d]
return 'on_aline', [a, x, b, c, y, d]
elif name in ['cyclic', 'O']:
a, b, c = [x for x in args if x != point]
return 'on_circum', [point, a, b, c]
return name, args
def check_valid_args(name: str, args: list[str]) -> bool:
"""Check whether a predicate is grammarically correct.
Args:
name: str: name of the predicate
args: list[str]: args of the predicate
Returns:
bool: whether the predicate arg count is valid.
"""
if name == 'perp':
if len(args) != 4:
return False
a, b, c, d = args
if len({a, b}) < 2:
return False
if len({c, d}) < 2:
return False
elif name == 'para':
if len(args) != 4:
return False
a, b, c, d = args
if len({a, b, c, d}) < 4:
return False
elif name == 'cong':
if len(args) != 4:
return False
a, b, c, d = args
if len({a, b}) < 2:
return False
if len({c, d}) < 2:
return False
elif name == 'coll':
if len(args) != 3:
return False
a, b, c = args
if len({a, b, c}) < 3:
return False
elif name == 'cyclic':
if len(args) != 4:
return False
a, b, c, d = args
if len({a, b, c, d}) < 4:
return False
elif name == 'eqangle':
if len(args) != 8:
return False
a, b, c, d, e, f, g, h = args
if len({a, b, c, d}) < 3:
return False
if len({e, f, g, h}) < 3:
return False
return True
def try_translate_constrained_to_construct(string: str, g: gh.Graph) -> str:
"""Whether a string of aux construction can be constructed.
Args:
string: str: the string describing aux construction.
g: gh.Graph: the current proof state.
Returns:
str: whether this construction is valid. If not, starts with "ERROR:".
"""
if string[-1] != ';':
return 'ERROR: must end with ;'
head, prem_str = string.split(' : ')
point = head.strip()
if len(point) != 1 or point == ' ':
return f'ERROR: invalid point name {point}'
existing_points = [p.name for p in g.all_points()]
if point in existing_points:
return f'ERROR: point {point} already exists.'
prem_toks = prem_str.split()[:-1] # remove the EOS ' ;'
prems = [[]]
for i, tok in enumerate(prem_toks):
if tok.isdigit():
if i < len(prem_toks) - 1:
prems.append([])
else:
prems[-1].append(tok)
if len(prems) > 2:
return 'ERROR: there cannot be more than two predicates.'
clause_txt = point + ' = '
constructions = []
for prem in prems:
name, *args = prem
if point not in args:
return f'ERROR: {point} not found in predicate args.'
if not check_valid_args(pt.map_symbol(name), args):
return 'ERROR: Invalid predicate ' + name + ' ' + ' '.join(args)
for a in args:
if a != point and a not in existing_points:
return f'ERROR: point {a} does not exist.'
try:
name, args = translate_constrained_to_constructive(point, name, args)
except: # pylint: disable=bare-except
return 'ERROR: Invalid predicate ' + name + ' ' + ' '.join(args)
if name == 'on_aline':
if args.count(point) > 1:
return f'ERROR: on_aline involves twice {point}'
constructions += [name + ' ' + ' '.join(args)]
clause_txt += ', '.join(constructions)
clause = pr.Clause.from_txt(clause_txt)
try:
g.copy().add_clause(clause, 0, DEFINITIONS)
except: # pylint: disable=bare-except
return 'ERROR: ' + traceback.format_exc()
return clause_txt
def insert_aux_to_premise(pstring: str, auxstring: str) -> str:
"""Insert auxiliary constructs from proof to premise.
Args:
pstring: str: describing the problem to solve.
auxstring: str: describing the auxiliar construction.
Returns:
str: new pstring with auxstring inserted before the conclusion.
"""
setup, goal = pstring.split(' ? ')
return setup + '; ' + auxstring + ' ? ' + goal
class BeamQueue:
"""Keep only the top k objects according to their values."""
def __init__(self, max_size: int = 512):
self.queue = []
self.max_size = max_size
def add(self, node: object, val: float) -> None:
"""Add a new node to this queue."""
if len(self.queue) < self.max_size:
self.queue.append((val, node))
return
# Find the minimum node:
min_idx, (min_val, _) = min(enumerate(self.queue), key=lambda x: x[1])
# replace it if the new node has higher value.
if val > min_val:
self.queue[min_idx] = (val, node)
def __iter__(self):
for val, node in self.queue:
yield val, node
def __len__(self) -> int:
return len(self.queue)
def run_alphageometry(
model: lm.LanguageModelInference,
p: pr.Problem,
search_depth: int,
beam_size: int,
out_file: str,
) -> bool:
"""Simplified code to run AlphaGeometry proof search.
We removed all optimizations that are infrastructure-dependent, e.g.
parallelized model inference on multi GPUs,
parallelized DD+AR on multiple CPUs,
parallel execution of LM and DD+AR,
shared pool of CPU workers across different problems, etc.
Many other speed optimizations and abstractions are also removed to
better present the core structure of the proof search.
Args:
model: Interface with inference-related endpoints to JAX's model.
p: pr.Problem object describing the problem to solve.
search_depth: max proof search depth.
beam_size: beam size of the proof search.
out_file: path to output file if solution is found.
Returns:
boolean of whether this is solved.
"""
# translate the problem to a string of grammar that the LM is trained on.
string = p.setup_str_from_problem(DEFINITIONS)
# special tokens prompting the LM to generate auxiliary points.
string += ' {F1} x00'
# the graph to represent the proof state.
g, _ = gh.Graph.build_problem(p, DEFINITIONS)
# First we run the symbolic engine DD+AR:
if run_ddar(g, p, out_file):
return True
# beam search for the proof
# each node in the search tree is a 3-tuple:
# (<graph representation of proof state>,
# <string for LM to decode from>,
# <original problem string>)
beam_queue = BeamQueue(max_size=beam_size)
# originally the beam search tree starts with a single node (a 3-tuple):
beam_queue.add(
node=(g, string, p.txt()), val=0.0 # value of the root node is simply 0.
)
for depth in range(search_depth):
logging.info(
'Depth %s. There are %i nodes to expand:', depth, len(beam_queue)
)
for _, (_, string, _) in beam_queue:
logging.info(string)
new_queue = BeamQueue(max_size=beam_size) # to replace beam_queue.
for prev_score, (g, string, pstring) in beam_queue:
logging.info('Decoding from %s', string)
outputs = model.beam_decode(string, eos_tokens=[';'])
# translate lm output to the constructive language.
# so that we can update the graph representing proof states:
translations = [
try_translate_constrained_to_construct(o, g)
for o in outputs['seqs_str']
]
# couple the lm outputs with its translations
candidates = zip(outputs['seqs_str'], translations, outputs['scores'])
# bring the highest scoring candidate first
candidates = reversed(list(candidates))
for lm_out, translation, score in candidates:
logging.info('LM output (score=%f): "%s"', score, lm_out)
logging.info('Translation: "%s"\n', translation)
if translation.startswith('ERROR:'):
# the construction is invalid.
continue
# Update the constructive statement of the problem with the aux point:
candidate_pstring = insert_aux_to_premise(pstring, translation)
logging.info('Solving: "%s"', candidate_pstring)
p_new = pr.Problem.from_txt(candidate_pstring)
# This is the new proof state graph representation:
g_new, _ = gh.Graph.build_problem(p_new, DEFINITIONS)
if run_ddar(g_new, p_new, out_file):
logging.info('Solved.')
return True
# Add the candidate to the beam queue.
new_queue.add(
# The string for the new node is old_string + lm output +
# the special token asking for a new auxiliary point ' x00':
node=(g_new, string + ' ' + lm_out + ' x00', candidate_pstring),
# the score of each node is sum of score of all nodes
# on the path to itself. For beam search, there is no need to
# normalize according to path length because all nodes in beam
# is of the same path length.
val=prev_score + score,
)
# Note that the queue only maintain at most beam_size nodes
# so this new node might possibly be dropped depending on its value.
# replace the old queue with new queue before the new proof search depth.
beam_queue = new_queue
return False
def main(_):
global DEFINITIONS
global RULES
# definitions of terms used in our domain-specific language.
DEFINITIONS = pr.Definition.from_txt_file(_DEFS_FILE.value, to_dict=True)
# load inference rules used in DD.
RULES = pr.Theorem.from_txt_file(_RULES_FILE.value, to_dict=True)
# when using the language model,
# point names will be renamed to alphabetical a, b, c, d, e, ...
# instead of staying with their original names,
# in order to match the synthetic training data generation.
need_rename = _MODE.value != 'ddar'
# load problems from the problems_file,
problems = pr.Problem.from_txt_file(
_PROBLEMS_FILE.value, to_dict=True, translate=need_rename
)
if _PROBLEM_NAME.value not in problems:
raise ValueError(
f'Problem name `{_PROBLEM_NAME.value}` '
+ f'not found in `{_PROBLEMS_FILE.value}`'
)
this_problem = problems[_PROBLEM_NAME.value]
if _MODE.value == 'ddar':
g, _ = gh.Graph.build_problem(this_problem, DEFINITIONS)
run_ddar(g, this_problem, _OUT_FILE.value)
elif _MODE.value == 'alphageometry':
model = get_lm(_CKPT_PATH.value, _VOCAB_PATH.value)
run_alphageometry(
model,
this_problem,
_SEARCH_DEPTH.value,
_BEAM_SIZE.value,
_OUT_FILE.value,
)
else:
raise ValueError(f'Unknown FLAGS.mode: {_MODE.value}')
if __name__ == '__main__':
app.run(main)