-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathshake.f
246 lines (186 loc) · 9.38 KB
/
shake.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
********************************************************************************
** FICHE F.8. SHAKE ALGORITHM FOR CONSTRAINT DYNAMICS OF A CHAIN MOLECULE **
** This FORTRAN code is intended to illustrate points made in the text. **
** To our knowledge it works correctly. However it is the responsibility of **
** the user to test it, if it is to be used in a research application. **
********************************************************************************
SUBROUTINE MOVE ( DT, TOL, MAXIT, NB, BOX, K, WC )
COMMON / BLOCK1 / RX, RY, RZ, OX, OY, OZ, FX, FY, FZ
COMMON / BLOCK2 / DSQ, M
C *******************************************************************
C ** CONSTRAINT DYNAMICS OF A CHAIN OF ATOMS USING SHAKE. **
C ** **
C ** THIS ROUTINE COMPUTES CONSTRAINT EFFECTS IN AN ITERATIVE WAY. **
C ** WE APPLY BOND LENGTH CONSTRAINTS TO ADJACENT ATOMS ONLY IN A **
C ** CHAIN MOLECULE WHICH MAY BE CYCLIC. THE GENERALIZATION TO **
C ** TO MORE COMPLICATED SYSTEMS IS STRAIGHTFORWARD. THE **
C ** CONSTRAINT EQUATIONS ARE LINEARIZED, AND EACH CONSTRAINT IS **
C ** TREATED IN TURN, UNTIL BOND LENGTHS ARE SATISFIED TO WITHIN A **
C ** SPECIFIED TOLERANCE. **
C ** IN THIS EXAMPLE WE TAKE A 6-ATOM CHAIN. **
C ** **
C ** REFERENCE: **
C ** **
C ** RYCKAERT ET AL., J. COMP. PHYS. 23, 327, 1977. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF MOLECULES **
C ** INTEGER NA NUMBER OF ATOMS PER MOL. **
C ** REAL DT TIMESTEP **
C ** REAL TOL BOND LENGTH TOLERANCE **
C ** INTEGER MAXIT MAXIMUM ALLOWED ITERATIONS **
C ** INTEGER NB NUMBER OF BONDS **
C ** REAL BOX BOX LENGTH **
C ** REAL K KINETIC ENERGY **
C ** REAL WC CONSTRAINT VIRIAL **
C ** REAL RX(N,NA),RY(N,NA),RZ(N,NA) ATOM POSITIONS AT TIME T **
C ** REAL OX(N,NA),OY(N,NA),OZ(N,NA) OLD POSITIONS AT TIME T-DT **
C ** REAL FX(N,NA),FY(N,NA),FZ(N,NA) ATOM FORCES AT TIME T **
C ** REAL DSQ(NA) SQUARED BOND LENGTHS **
C ** REAL M(NA) ATOMIC MASSES **
C ** **
C ** USAGE: **
C ** **
C ** THE ROUTINE IS CALLED AFTER COMPUTATION OF THE FORCES. **
C ** THE VERLET ALGORITHM IS USED TO ADVANCE THE POSITIONS FROM **
C ** RX,RY,RZ TO PX,PY,PZ, WITHOUT ANY CONSTRAINTS APPLIED. **
C ** THE ROUTINE THEN USES THE DESIRED SQUARED BOND LENGTHS IN DSQ **
C ** TO CONSTRAIN THE NEW POSITIONS. **
C ** DSQ(A) IS THE SQUARED BOND LENGTH BETWEEN ATOM A AND A+1. **
C ** NB IS THE NUMBER OF SUCH BONDS. IF NB = NA - 1 THE MOLECULE **
C ** IS NON-CYCLIC WHILE IF NB = NA THE MOLECULE IS CYCLIC. **
C ** THE ROUTINE ALSO REQUIRES THE DESIRED TOLERANCE AND AN UPPER **
C ** LIMIT TO THE NUMBER OF ITERATIONS IN CASE OF NON-CONVERGENCE. **
C ** THE ROUTINE USES TWO LOGICAL ARRAYS TO KEEP TRACK OF WHETHER **
C ** OR NOT WE HAVE MOVED (I.E. CORRECTED) THE ATOM POSITIONS: **
C ** MOVING(A) A=1,NA SAYS WHETHER WE ARE MOVING ATOM A THIS TIME **
C ** MOVED(A) A=1,NA SAYS WHETHER WE MOVED ATOM A LAST TIME. **
C ** THIS IS SO THAT WE CAN STOP CORRECTING THE POSITIONS OF ATOMS **
C ** WHENEVER POSSIBLE, SO AS TO CUT DOWN ON UNNECESSARY WORK. **
C ** THE ROUTINE RETURNS WITH NEW (T+DT) CONSTRAINED POSITIONS IN **
C ** RX,RY,RZ AND OLD (T) POSITIONS IN OX,OY,OZ. **
C ** THE ROUTINE ALSO CALCULATES THE KINETIC ENERGY AT TIME T **
C ** AND THE CONSTRAINT CONTRIBUTION TO THE VIRIAL WC. **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
INTEGER NA
PARAMETER ( NA = 6 )
INTEGER MAXIT, NB
REAL RX(N,NA), RY(N,NA), RZ(N,NA)
REAL OX(N,NA), OY(N,NA), OZ(N,NA)
REAL FX(N,NA), FY(N,NA), FZ(N,NA)
REAL DSQ(NA)
REAL M(NA)
REAL TOL, DT, K, WC, BOX
REAL RXI(NA), RYI(NA), RZI(NA)
REAL PXI(NA), PYI(NA), PZI(NA)
LOGICAL MOVING(NA)
LOGICAL MOVED(NA)
LOGICAL DONE
INTEGER IT, A, B, I
REAL PXAB, PYAB, PZAB, PABSQ
REAL RXAB, RYAB, RZAB, RABSQ, DIFFSQ, RPAB
REAL GAB, DX, DY, DZ, TOL2, DTSQ, VXIA, VYIA, VZIA
REAL BOXINV, RPTOL, RMA, RMB
PARAMETER ( RPTOL = 1.0E-6 )
C *******************************************************************
IF ( ( NB .NE. NA ) .AND. ( NB .NE. NA-1 ) ) STOP 'NB IN ERROR'
BOXINV = 1.0 / BOX
DTSQ = DT ** 2
TOL2 = 2.0 * TOL
K = 0.0
WC = 0.0
C ** LOOP OVER ALL MOLECULES **
DO 2000 I = 1, N
C ** VERLET ALGORITHM **
DO 100 A = 1, NA
RXI(A) = RX(I,A)
RYI(A) = RY(I,A)
RZI(A) = RZ(I,A)
PXI(A) = 2.0 * RX(I,A) - OX(I,A) + DTSQ * FX(I,A) / M(A)
PYI(A) = 2.0 * RY(I,A) - OY(I,A) + DTSQ * FY(I,A) / M(A)
PZI(A) = 2.0 * RZ(I,A) - OZ(I,A) + DTSQ * FZ(I,A) / M(A)
MOVING(A) = .FALSE.
MOVED(A) = .TRUE.
100 CONTINUE
IT = 0
DONE = .FALSE.
C ** BEGIN ITERATIVE LOOP **
1000 IF ( ( .NOT. DONE ) .AND. ( IT .LE. MAXIT ) ) THEN
DONE = .TRUE.
DO 300 A = 1, NB
B = A + 1
IF ( B .GT. NA ) B = 1
IF ( MOVED(A) .OR. MOVED(B) ) THEN
PXAB = PXI(A) - PXI(B)
PXAB = PXAB - ANINT ( PXAB * BOXINV ) * BOX
PYAB = PYI(A) - PYI(B)
PYAB = PYAB - ANINT ( PYAB * BOXINV ) * BOX
PZAB = PZI(A) - PZI(B)
PZAB = PZAB - ANINT ( PZAB * BOXINV ) * BOX
PABSQ = PXAB ** 2 + PYAB ** 2 + PZAB ** 2
RABSQ = DSQ(A)
DIFFSQ = RABSQ - PABSQ
IF ( ABS(DIFFSQ) .GT. ( RABSQ * TOL2 ) ) THEN
RXAB = RXI(A) - RXI(B)
RXAB = RXAB - ANINT ( RXAB * BOXINV ) * BOX
RYAB = RYI(A) - RYI(B)
RYAB = RYAB - ANINT ( RYAB * BOXINV ) * BOX
RZAB = RZI(A) - RZI(B)
RZAB = RZAB - ANINT ( RZAB * BOXINV ) * BOX
RPAB = RXAB * PXAB + RYAB * PYAB + RZAB * PZAB
IF ( RPAB .LT. ( RABSQ * RPTOL ) ) THEN
STOP 'CONSTRAINT FAILURE '
ENDIF
RMA = 1.0 / M(A)
RMB = 1.0 / M(B)
GAB = DIFFSQ / ( 2.0 * ( RMA + RMB ) * RPAB )
WC = WC + GAB * RABSQ
DX = RXAB * GAB
DY = RYAB * GAB
DZ = RZAB * GAB
PXI(A) = PXI(A) + RMA * DX
PYI(A) = PYI(A) + RMA * DY
PZI(A) = PZI(A) + RMA * DZ
PXI(B) = PXI(B) - RMB * DX
PYI(B) = PYI(B) - RMB * DY
PZI(B) = PZI(B) - RMB * DZ
MOVING(A) = .TRUE.
MOVING(B) = .TRUE.
DONE = .FALSE.
ENDIF
ENDIF
300 CONTINUE
DO 400 A = 1, NA
MOVED(A) = MOVING(A)
MOVING(A) = .FALSE.
400 CONTINUE
IT = IT + 1
GOTO 1000
ENDIF
C ** END ITERATIVE LOOP **
IF ( .NOT. DONE ) THEN
WRITE(*,'('' TOO MANY CONSTRAINT ITERATIONS '')')
WRITE(*,'('' MOLECULE '',I5)') I
STOP
ENDIF
DO 500 A = 1, NA
VXIA = 0.5 * ( PXI(A) - OX(I,A) ) / DT
VYIA = 0.5 * ( PYI(A) - OY(I,A) ) / DT
VZIA = 0.5 * ( PZI(A) - OZ(I,A) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(A)
RX(I,A) = PXI(A)
RY(I,A) = PYI(A)
RZ(I,A) = PZI(A)
OX(I,A) = RXI(A)
OY(I,A) = RYI(A)
OZ(I,A) = RZI(A)
500 CONTINUE
2000 CONTINUE
C ** END LOOP OVER MOLECULES **
WC = WC / DTSQ / 3.0
K = 0.5 * K
RETURN
END