This repository has been archived by the owner on Dec 14, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
140 lines (113 loc) · 5.21 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/python3.6
"""MetaCall Examples - Image recognition.
[MetaCall](https://metacall.io)
[MetaCall Examples](https://github.com/metacall/examples)
This module shows the ability to run an open source machine learning library for research and production on Metacall.
"""
import tensorflow as tf
import numpy as np
from distutils.version import StrictVersion
from PIL import Image
import io
import os
import base64
import requests
if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
# Object detection
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
#from object_detection.utils import visualization_utils as vis_util
import visualization_utils as vis_util
# Ease of use
import helpers
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('object_detection', 'data', 'mscoco_label_map.pbtxt')
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[1], image.shape[2])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: image})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.int64)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
# if graph doesnt exist, download it
if not os.path.exists(helpers.PATH_TO_FROZEN_GRAPH):
helpers.download_model()
# Read index.html file
basepath = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(basepath, 'index.html'), 'r') as f:
template = f.read()
def index():
"""Read index.html from file and return it.
Returns:
Return the index.html content.
"""
return template
def run_detection(url):
"""Read image and return its detection
Returns:
Return encoded image as base64 and utf-8 string
"""
# Load image from URL
response = requests.get(url)
image = Image.open(io.BytesIO(response.content))
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = helpers.load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np_expanded, helpers.load_model_into_memory())
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=9)
with io.BytesIO() as output:
Image.fromarray(image_np).save(output, format="JPEG")
contents = output.getvalue()
# returns as string instead of bytes (later will have to be decoded in the frontend)
return base64.standard_b64encode(contents).decode("utf-8")
return "ERROR"