-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalidation.R
261 lines (216 loc) · 8.66 KB
/
validation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Notes -------------------------------------------------------------------
# Run the forward chaining
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace
seed <- 1744834965 # seed also used for stan
set.seed(seed) # Reproducibility
library(TanakaData) # Contains data and data processing functions
library(HuraultMisc) # Functions shared across projects
library(rstan)
rstan_options(auto_write = TRUE) # Save compiled model
options(mc.cores = parallel::detectCores()) # Parallel computing
library(foreach)
library(doParallel)
source("functions.R") # Additional functions
source("functions_data.R")
#### OPTIONS
mdl_name <- "BaseModel"
dataset <- "Flares"
score <- "Bother"
t_horizon <- 7
run <- FALSE
n_chains <- 6 # max cores=48
n_it <- 3000
n_cluster <- 6 # floor(parallel::detectCores() / n_chains)
####
mdl_name <- match.arg(mdl_name, c("Uniform", "Historical", "RandomWalk", "Autoregression", "BaseModel"))
stan_code <- file.path("Models", paste0(mdl_name, ".stan"))
dataset <- match.arg(dataset, c("Flares", "SWET"))
score <- match.arg(score, c("Bother", "Scratch"))
stopifnot(score == "Bother" | dataset == "Flares")
suff <- paste(mdl_name, dataset, score, sep = "_")
dir_name <- file.path("Results", paste0("val_", suff)) # temporary directory
res_file <- file.path("Results", paste0("val_", suff, ".rds"))
cal_file <- file.path("Results", paste0("cal_", suff, ".rds"))
if (mdl_name == "RandomWalk") {
param_pop <- c("sigma_S")
param_ind <- c()
param_other <- c("S_mis", "S_pred")
} else if (mdl_name == "Autoregression") {
param_pop <- c("b_S", "sigma_S", "mu_wS", "sigma_wS", "mu_T", "sigma_T")
param_ind <- c("wS", "wT")
param_other <- c("S_mis", "S_pred")
} else if (mdl_name == "BaseModel") {
param_pop <- c("b_S", "sigma_S", "mu_wS", "sigma_wS", "mu_T", "sigma_T", "sigma_P")
param_ind <- c("wS", "wT", "P")
param_other <- c("S_mis", "S_pred")
}
is_stan_model <- !(mdl_name %in% c("Uniform", "Historical"))
# Functions ---------------------------------------------------------------
process_predictions <- function(fit, df_test) {
# Process predictions:
# - Identify test replications
# - Compute probability table from samples
# - Compute lpd and RPS
#
# Args:
# fit: Stanfit object
# df_test: Test dataset
#
# Returns:
# Prediction dataframe
do.call(rbind,
lapply(unique(df_test[["Patient"]]),
# Deal patient by patient as need to remove wrong trajectories
function(pid) {
tmp <- subset(df_test, Patient == pid)
lbl <- paste0("S_pred[", tmp[["Index"]], "]")
ps <- rstan::extract(fit, pars = lbl)
# Put in matrix form
if (length(ps) > 1) {
ps <- do.call(cbind, ps)
} else {
ps <- matrix(ps[[1]], ncol = 1)
}
# Compute probability table
prob <- compute_pmf(ps, pred = TRUE)
# Join probability table
colnames(prob) <- paste0("P(S=", colnames(prob), ")")
tmp <- cbind(tmp, prob)
# Compute lpd, RPS and expected value
tmp <- summarise_predictions(tmp)
return(tmp)
}))
}
summarise_predictions <- function(res) {
# Add lpd, RPS and E(S) column to prediction dataframe
#
# Args:
# res: Prediction dataframe
#
# Returns:
# Prediction dataframe
prob <- prediction_matrices(res)$Forecast
for (i in 1:nrow(res)) {
res$lpd[i] <- log(prob[i, res$Severity[i] + 1])
res$RPS[i] <- compute_RPS(as.numeric(prob[i, ]), res$Severity[i] + 1)
}
res[["E(S)"]] <- prob %*% (0:10) # Expected value
return(res)
}
# Processing -------------------------------------------------------------------
if (is_stan_model) {
param <- c(param_pop, param_ind, param_other)
format_stan_data <- function(df) {
with(df,
list(N = length(Severity),
N_obs = sum(!is.na(Severity)),
N_pt = length(unique(Patient)),
t_max = aggregate(Day ~ Patient, FUN = length)$Day,
idx_obs = which(!is.na(Severity)),
S_obs = na.omit(Severity),
Treat = Treatment, # not used in RandomWalk
horizon = t_horizon))
}
if (run) {
compiled_model <- rstan::stan_model(stan_code)
}
}
if (dataset == "Flares") {
df <- process_Flares(load_Flares(), score)
} else if (dataset == "SWET") {
df <- process1_SWET(SWET)
}
# df <- subset(df, Patient %in% unique(df$Patient)[1:20])
max_day <- aggregate(Day ~ Patient, df, max)
max_it <- floor((max(max_day$Day) - 1) / t_horizon) # -1 so that there is at least one prediction in the last iteration
# Forward chaining --------------------------------------------------------
if (run) {
duration <- Sys.time()
cl <- makeCluster(n_cluster)
registerDoParallel(cl)
writeLines(c(""), "log.txt")
dir.create(dir_name)
out <- foreach(it = max_it:0) %dopar% {
# Need to reload functions and libraries
library(rstan)
rstan_options(auto_write = TRUE) # Save compiled model
options(mc.cores = parallel::detectCores()) # Parallel computing
source("functions.R") # need to reload functions
sink("log.txt", append = TRUE)
cat(paste("Starting model", it, "\n"))
####
# Hold out data
train_days <- 1:(it * t_horizon + 1)
test_days <- (it * t_horizon + 1):((it + 1) * t_horizon) + 1
df_train <- df[df$Day %in% train_days, ]
pt <- unique(df_train[["Patient"]])
df_test <- na.omit(df[df$Day %in% test_days, c("Patient", "Day", "Severity")])
# Compute prediction horizon
last_obs <- aggregate(Day ~ Patient, df_train[!is.na(df_train$Severity), ], max) # Last observed value
colnames(last_obs)[colnames(last_obs) == "Day"] <- "Last_obs"
df_test <- merge(df_test, last_obs, by = "Patient", all.x = TRUE, all.y = FALSE)
df_test[["Horizon"]] <- df_test[["Day"]] - df_test[["Last_obs"]]
df_test[["Last_obs"]] <- NULL
if (is_stan_model) {
# Fit Stan model
data_stan <- format_stan_data(df_train)
fit <- sampling(compiled_model,
data = data_stan,
iter = n_it,
chains = n_chains,
# init = 0,
pars = param)
# Get index of test predictions
df_test <- merge(df_test, predictions_dictionary(pt, data_stan), all.x = TRUE, all.y = FALSE)
# Extract and process predictions
tmp_pred <- process_predictions(fit, df_test)
tmp_pred$Iteration <- it
# Extract parameters
tmp_par <- extract_parameters(fit,
param = param,
param_ind = param_ind,
param_obs = c("S"),
param_pred = c("S_pred"),
pt = pt,
data_stan = data_stan)
tmp_par$Iteration <- it
} else if (mdl_name == "Uniform") {
prob <- matrix(1 / 11, ncol = 11, nrow = nrow(df_test))
colnames(prob) <- paste0("P(S=", 0:10, ")")
tmp_pred <- cbind(df_test, prob)
tmp_pred <- summarise_predictions(tmp_pred)
tmp_pred$Iteration <- it
tmp_par <- NULL
} else if (mdl_name == "Historical") {
p <- table(c(0:10, df_train$Severity))
p <- p / sum(p)
prob <- matrix(rep(p, nrow(df_test)), ncol = length(p), byrow = TRUE)
colnames(prob) <- paste0("P(S=", 0:10, ")")
tmp_pred <- cbind(df_test, prob)
tmp_pred <- summarise_predictions(tmp_pred)
tmp_pred$Iteration <- it
tmp_par <- NULL
}
# Save results (better to save in the loop in case something breaks)
saveRDS(list(Prediction = tmp_pred, Parameters = tmp_par),
file = file.path(dir_name, paste0("val_", it, ".rds")))
####
cat(paste("Ending model", it, "\n"))
NULL # return
}
stopCluster(cl)
(duration = Sys.time() - duration)
# Recombine results
files <- list.files(dir_name)
if (length(files) < max_it + 1) {
warning("Number of files (", length(files), ") less than the number of iterations (", max_it + 1, "). Some runs may have failed.")
}
res_parallel <- lapply(files,
function(f) {
readRDS(file.path(dir_name, f))
})
res <- do.call("rbind", lapply(res_parallel, function(x) {x$Prediction}))
par <- do.call("rbind", lapply(res_parallel, function(x) {x$Parameters}))
saveRDS(list(Prediction = res, Parameters = par), file = res_file)
}