-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprior_fake_check.R
323 lines (281 loc) · 11.9 KB
/
prior_fake_check.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Notes -------------------------------------------------------------------
# Prior predictive checks and fake data check
# Fake data are generated as missing values to be constrained between 0 and 10, but still need to be rounded
# To check the prior distribution, you should specify a short time series (e.g. n_dur = 5) and 1 patient (n_pt = 1) is enough
# This is because for longer time series, since the score is bounded by 0 and 10, some areas of the priors cannot be accessed easily due to numerical constraints
# This limit the predictive distribution available for fake data check (but it's better than nothing)
# Before running the fake data check, check that the sampling of the prior predictive distribution is OK
# When testing on different samples from the prior predictive distribution we can recover the true parameters and patient parameters have a good coverage probability
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear workspace (but bette to restart R entirely)
seed <- 1744834965 # seed also used for Stan
set.seed(seed) # Reproducibility
library(HuraultMisc) # Functions shared across projects
library(rstan)
rstan_options(auto_write = TRUE) # Save compiled model
options(mc.cores = parallel::detectCores()) # Parallel computing
library(ggplot2)
library(cowplot)
source("functions.R") # Additional functions
#### OPTIONS
mdl_name <- "ExtendedModel"
n_pt <- 1 # 1, 20 # Number of fake patients
n_dur <- 5 # 5, 100 # Time series length
prop_missing <- 0.3 # Proportion of missing values
run_prior <- TRUE
run_fake <- FALSE
n_chains <- 4
n_it <- 2000
####
mdl_name <- match.arg(mdl_name, c("RandomWalk", "Autoregression", "BaseModel", "ExtendedModel"))
stan_code <- file.path("Models", paste0(mdl_name, ".stan"))
if (mdl_name == "RandomWalk") {
param_pop <- c("sigma_S")
param_ind <- c()
param_other <- c("S")
} else if (mdl_name == "Autoregression") {
param_pop <- c("b_S", "sigma_S", "mu_wS", "sigma_wS", "mu_T", "sigma_T")
param_ind <- c("wS", "wT")
param_other <- c("S")
} else if (mdl_name == "BaseModel") {
param_pop <- c("b_S", "sigma_S", "mu_wS", "sigma_wS", "mu_T", "sigma_T", "sigma_P")
param_ind <- c("wS", "wT", "P")
param_other <- c("S")
} else if (mdl_name %in% c("ExtendedModel")) {
main_param <- c("b_S", "sigma_S", "mu_wS", "sigma_wS", "sigma_P")
param_demo <- c("w_FLG", "w_Sex", "w_Age", "w_White", "w_Home")
param_SU <- c("mu_SU", "sigma_SU")
param_CS <- c("mu_CS", "sigma_CS", "w_CS_Mild", "w_CS_Mod", "w_CS_Pot", "w_CS_VPot")
param_CI <- c("mu_CI", "sigma_CI", "w_CI_Mild", "w_CI_Mod")
param_pop <- c(main_param, param_demo, param_SU, param_CS, param_CI)
param_ind <- c("wS", "P", "risk", "w_SU", "w_CS", "b_CS", "w_CI", "b_CI",
"q_CS_Mild", "q_CS_Mod", "q_CS_Pot", "q_CS_VPot", "q_CI_Mild", "q_CI_Mod")
param_other <- c("S")
}
param <- c(param_pop, param_ind, param_other)
prior_file <- file.path("Results", paste0("prior_", mdl_name, ".rds"))
par0_file <- file.path("Results", paste0("par0_", mdl_name, ".rds"))
fake_file <- file.path("Results", paste0("fake_", mdl_name, ".rds"))
if (any(c(run_prior, run_fake))) {
compiled_model <- stan_model(stan_code)
}
# Processing --------------------------------------------------------------
# Data
pt <- 1:n_pt
df <- expand.grid(Patient = pt, Day = 1:n_dur)
df <- df[order(df$Patient, df$Day), ]
df[["S"]] <- NA
df[df$Day == 1, "S"] <- sample(0:10, n_pt, replace = TRUE)
if (mdl_name != "ExtendedModel") {
df[["Treat"]] <- do.call(c,
lapply(1:n_pt,
function(x) {
generate_treatment(c(rbeta(1, 2, 3), rbeta(1, 3, 2)), n_dur)
}))
format_stan_data <- function(df, lbl) {
list(
N = length(df[[lbl]]),
N_obs = sum(!is.na(df[[lbl]])),
N_pt = length(unique(df[["Patient"]])),
t_max = array(aggregate(Day ~ Patient, df, length)$Day),
idx_obs = array(which(!is.na(df[[lbl]]))),
S_obs = array(na.omit(df[[lbl]])),
Treat = array(df[["Treat"]]),
horizon = 0
)
}
}
if (mdl_name == "ExtendedModel") {
for (x in c("CS", "CI", "SU", "Home")) {
df[[x]] <- do.call(c,
lapply(1:n_pt,
function(x) {
generate_treatment(c(rbeta(1, 2, 3), rbeta(1, 3, 2)), n_dur)
}))
}
dp <- data.frame(
Patient = 1:n_pt,
Age = round(abs(rnorm(n_pt, 0, 5))),
Sex = rbinom(n_pt, 1, .5),
White = rbinom(n_pt, 1, .5),
FLG = rbinom(n_pt, 1, .5),
N_CS = array(sample(1:n_dur, n_pt, replace = TRUE)),
N_CI = array(sample(1:n_dur, n_pt, replace = TRUE)),
Confidence = sample(1:4, n_pt, replace = TRUE)
)
dp <- cbind(dp,
data.frame(
# number of applications * using treatment (0-1) * daily quantity
CS_Mild = dp[["N_CS"]] * rbinom(n_pt, 1, .25) * round(abs(rnorm(n_pt, 0, 2)), 1), # total appli
CS_Mod = dp[["N_CS"]] * rbinom(n_pt, 1, .25) * round(abs(rnorm(n_pt, 0, 2)), 1),
CS_Pot = dp[["N_CS"]] * rbinom(n_pt, 1, .25) * round(abs(rnorm(n_pt, 0, 2)), 1),
CS_VPot = dp[["N_CS"]] * rbinom(n_pt, 1, .25) * round(abs(rnorm(n_pt, 0, 2)), 1),
CI_Mild = dp[["N_CI"]] * rbinom(n_pt, 1, .25) * round(abs(rnorm(n_pt, 0, 2)), 1),
CI_Mod = dp[["N_CI"]] * rbinom(n_pt, 1, .25) * round(abs(rnorm(n_pt, 0, 2)), 1)
)
)
format_stan_data <- function(dt, dp, lbl) {
list(
N = length(dt[[lbl]]),
N_obs = sum(!is.na(dt[[lbl]])),
N_pt = length(unique(dt[["Patient"]])),
t_max = array(aggregate(Day ~ Patient, dt, length)[["Day"]]),
idx_obs = array(which(!is.na(dt[[lbl]]))),
S_obs = array(na.omit(dt[[lbl]])),
horizon = 0,
FLG = array(dp[["FLG"]]),
Sex = array(dp[["Sex"]]),
Age = array(dp[["Age"]]),
White = array(dp[["White"]]),
Home = array(dt[["Home"]]),
Conf = array(dp[["Confidence"]]),
SU = dt[["SU"]],
CS = dt[["CS"]],
CI = dt[["CI"]],
N_CS = array(dp[["N_CS"]]),
Q_CS_Mild = array(dp[["CS_Mild"]]),
Q_CS_Mod = array(dp[["CS_Mod"]]),
Q_CS_Pot = array(dp[["CS_Pot"]]),
Q_CS_VPot = array(dp[["CS_VPot"]]),
N_CI = array(dp[["N_CI"]]),
Q_CI_Mild = array(dp[["CI_Mild"]]),
Q_CI_Mod = array(dp[["CI_Mod"]])
)
}
}
# Prior predictive checks -----------------------------------------------------
if (mdl_name != "ExtendedModel") {
data_prior <- format_stan_data(df, "S")
} else {
data_prior <- format_stan_data(df, dp, "S")
}
if (run_prior) {
fit_prior <- sampling(compiled_model,
data = data_prior,
pars = param,
iter = n_it,
chains = n_chains,
seed = seed,
control = list(adapt_delta = .9))
saveRDS(fit_prior, file = prior_file)
par0 <- extract_parameters(fit_prior,
param = param,
param_ind = param_ind,
param_obs = c("S"),
param_pred = c(),
pt = pt,
data_stan = data_prior)
saveRDS(par0, file = par0_file)
} else {
fit_prior <- readRDS(prior_file)
par0 <- readRDS(par0_file)
}
# Analyse results
if (FALSE) {
check_hmc_diagnostics(fit_prior)
pairs(fit_prior, pars = param_pop)
# Distribution of parameters
plot(fit_prior, pars = param_pop)
plot(fit_prior, pars = c(param_pop, paste0(param_ind, "[1]")), plotfun = "hist")
# Posterior predictive distribution
lapply(pt[1:min(length(pt), 5)],
function(i) {
ggplot(data = subset(par0, Patient == i & Variable == "S"),
aes(x = Day, y = Mean, ymin = `5%`, ymax = `95%`)) +
geom_line() +
geom_ribbon(alpha = .5) +
scale_y_continuous(breaks = 0:10, limits = c(0, 10)) +
theme_bw(base_size = 20) +
theme(panel.grid.minor.y = element_blank())
})
}
# Fake data check -------------------------------------------------------
s_meas <- extract(fit_prior, pars = "S")[[1]]
draw <- sample(1:nrow(s_meas), 1) # Take one draw from predictive distribution
# Fake trajectory
df[["S_fake"]] <- s_meas[draw, ]
df[["S_fake"]] <- round(df[["S_fake"]]) # round
df[as.logical(rbinom(nrow(df), 1, prop_missing)), "S_fake"] <- NA # Missing values
# Extract true parameters values
true_param <- HuraultMisc::extract_parameters_from_draw(fit_prior, param, draw)
true_param[["Patient"]] <- NA
id <- (true_param[["Parameter"]] %in% param_ind)
true_param[id, "Patient"] <- pt[true_param[id, "Index"]]
# Look at the data
lapply(pt[1:5],
function(patientID) {
ggplot(data = subset(df, Patient == patientID),
aes(x = Day, y = S_fake)) +
geom_path() +
scale_y_continuous(limits = c(0, 10), breaks = 0:10) +
labs(y = "Severity (fake)") +
theme_bw(base_size = 15) +
theme(panel.grid.minor.y = element_blank())
})
# Fit model with fake data
if (mdl_name != "ExtendedModel") {
data_fake <- format_stan_data(df, "S_fake")
} else {
data_fake <- format_stan_data(df, dp, "S_fake")
}
param <- c(param, "S_pred")
if (run_fake) {
fit_fake <- sampling(compiled_model,
data = data_fake,
pars = param,
iter = n_it,
chains = n_chains,
seed = seed,
control = list(adapt_delta = 0.9))
saveRDS(fit_fake, file = fake_file)
} else {
fit_fake <- readRDS(fake_file)
}
# Analyse results
if (FALSE) {
check_hmc_diagnostics(fit_fake)
pairs(fit_fake, pars = param_pop)
par_fake <- extract_parameters(fit_fake,
param = param,
param_ind = param_ind,
param_obs = c(),
param_pred = c("S_pred"),
pt = pt,
data_stan = data_fake)
# Can we recover population parameters
tmp <- merge(subset(par_fake, Variable %in% c(param_pop, param_ind)),
change_colnames(true_param, c("Parameter", "Value"), c("Variable", "True")),
by = c("Variable", "Patient"))
tmp$Patient <- factor(tmp$Patient, levels = pt)
ggplot(data = subset(tmp, Variable %in% param_pop),
aes(x = Variable)) +
geom_pointrange(aes(y = Mean, ymin = `5%`, ymax = `95%`)) +
geom_point(aes(y = True), colour = "#E69F00", size = 2) +
coord_flip() +
labs(x = "", y = "Estimate") +
theme_bw(base_size = 15)
# Can we recover patient parameters
lapply(intersect(c("wS", "wT", "b_CS", "b_CI", "w_SU", "P"), param_ind),
function(var_name) {
# Coefficient plot
tmp <- subset(tmp, Variable == var_name)
tmp$Patient <- factor(tmp$Patient, levels = tmp[order(tmp$Mean), "Patient"])
p1 <- ggplot(data = tmp,
aes(x = Patient)) +
geom_pointrange(aes(y = Mean, ymin = `5%`, ymax = `95%`)) +
geom_point(aes(y = True), colour = "#E69F00") +
coord_flip() +
labs(x = "", y = "Estimate") +
theme_bw(base_size = 15)
# Coverage plot
p2 <- HuraultMisc::plot_coverage(extract(fit_fake, pars = var_name)[[1]],
true_param[true_param[["Parameter"]] == var_name, "Value"])
plot_grid(p1, p2, ncol = 2)
})
# Posterior predictive checks
ppc <- prepare_ppc(fit_fake, change_colnames(df, "S_fake", "Severity"), par_fake, predictions_dictionary(pt, data_fake))
lapply(sample(pt, 5),
function(pid) {
plot_ppc(ppc, patientID = pid)
})
}