-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment.py
80 lines (62 loc) · 2.47 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import pytorch_lightning as pl
import torch
from torchvision import transforms
from sign_recognizer.config import Config
from sign_recognizer.datasets import videotransforms
from sign_recognizer.datasets.nslt_dataset import NSLT as Dataset
from sign_recognizer.model.lightning_model import InceptionI3dLightning
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
pl.seed_everything()
def run(cfg, root, train_split, save_model, i3d_weights, weights=None):
train_transforms = transforms.Compose([videotransforms.RandomCrop(224),
videotransforms.RandomHorizontalFlip(), ])
test_transforms = transforms.Compose([videotransforms.CenterCrop(224)])
dataset = Dataset(train_split, 'train', root, train_transforms)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=cfg.BATCH_SIZE,
shuffle=True,
num_workers=6,
pin_memory=True)
val_dataset = Dataset(train_split, 'test', root, test_transforms)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=cfg.BATCH_SIZE,
shuffle=False,
num_workers=6,
pin_memory=False)
lr = cfg.INIT_LR
weight_decay = cfg.ADAM_WEIGHT_DECAY
model = InceptionI3dLightning(lr, weight_decay, i3d_weights, num_classes=dataset.num_classes)
if weights:
print('loading weights {}'.format(weights))
model.load_state_dict(torch.load(weights))
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=save_model,
save_top_k=1,
monitor="val_total_loss",
mode='min',
filename="model-{epoch:02d}-{val_loss:.2f}")
trainer = pl.Trainer(
deterministic=True,
max_steps=cfg.MAX_STEPS,
max_epochs=400,
callbacks=[checkpoint_callback],
enable_progress_bar=True,
log_every_n_steps=1)
trainer.fit(model=model, train_dataloaders=dataloader, val_dataloaders=val_dataloader)
# save model to .pt format
#checkpoint = torch.load(f"{save_model}/{checkpoint_callback.best_model_path}")
#model.load_state_dict(checkpoint['state_dict'])
#torch.save(model.model.state_dict(), f"{save_model}/test_model.pt")
if __name__ == '__main__':
cfg = Config()
run(
cfg=cfg,
root=cfg.DATA_ROOT_PATH,
save_model=cfg.SAVE_MODEL_PATH,
train_split=cfg.TRAIN_SPLIT_FILE,
i3d_weights=cfg.ID3_PRETRAINED_WEIGHTS_PATH,
)