-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew.bib
312 lines (281 loc) · 10.2 KB
/
new.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
@Article{xu2019frequency,
author = {Xu, Zhi-Qin John and Zhang, Yaoyu and Luo, Tao and Xiao, Yanyang and Ma, Zheng},
journal = {arXiv preprint arXiv:1901.06523},
title = {Frequency principle: Fourier analysis sheds light on deep neural networks},
year = {2019},
}
@Article{Niu2018,
author = {Z.M. Niu and H.Z. Liang},
journal = {Physics Letters B},
title = {Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects},
year = {2018},
month = mar,
pages = {48--53},
volume = {778},
doi = {10.1016/j.physletb.2018.01.002},
publisher = {Elsevier {BV}},
url = {https://doi.org/10.1016/j.physletb.2018.01.002},
}
@Article{minato2022calculation,
author = {Minato, Futoshi and Niu, Zhongming and Liang, Haozhao and others},
journal = {Physical Review C},
title = {Calculation of $\beta$-decay half-lives within a Skyrme-Hartree-Fock-Bogoliubov energy density functional with the proton-neutron quasiparticle random-phase approximation and isoscalar pairing strengths optimized by a Bayesian method},
year = {2022},
number = {2},
pages = {024306},
volume = {106},
publisher = {APS},
}
@Article{niu2019comparative,
author = {Niu, ZM and Fang, JY and Niu, YF and others},
journal = {Physical Review C},
title = {Comparative study of radial basis function and Bayesian neural network approaches in nuclear mass predictions},
year = {2019},
number = {5},
pages = {054311},
volume = {100},
publisher = {APS},
}
@Article{wang2021optimizing,
author = {Wang, Zi-Ao and Pei, Junchen},
journal = {Physical Review C},
title = {Optimizing multilayer Bayesian neural networks for evaluation of fission yields},
year = {2021},
number = {6},
pages = {064608},
volume = {104},
publisher = {APS},
}
@Article{shang2022prediction,
author = {Shang, Tian-Shuai and Li, Jian and Niu, Zhong-Ming},
journal = {Nuclear Science and Techniques},
title = {Prediction of nuclear charge density distribution with feedback neural network},
year = {2022},
number = {12},
pages = {153},
volume = {33},
publisher = {Springer},
}
@Article{boehnlein2022colloquium,
author = {Boehnlein, Amber and Diefenthaler, Markus and Sato, Nobuo and Schram, Malachi and Ziegler, Veronique and Fanelli, Cristiano and Hjorth-Jensen, Morten and Horn, Tanja and Kuchera, Michelle P and Lee, Dean and others},
journal = {Reviews of Modern Physics},
title = {Colloquium: Machine learning in nuclear physics},
year = {2022},
number = {3},
pages = {031003},
volume = {94},
publisher = {APS},
}
@Article{saxena2021modified,
author = {Saxena, G and Sharma, PK and Saxena, Prafulla},
journal = {Journal of Physics G: Nuclear and Particle Physics},
title = {Modified empirical formulas and machine learning for $\alpha$-decay systematics},
year = {2021},
number = {5},
pages = {055103},
volume = {48},
publisher = {IOP Publishing},
}
@Article{Akkoyun2020,
author = {Serkan Akkoyun},
journal = {Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms},
title = {Estimation of fusion reaction cross-sections by artificial neural networks},
year = {2020},
month = jan,
pages = {51--54},
volume = {462},
doi = {10.1016/j.nimb.2019.11.014},
publisher = {Elsevier {BV}},
url = {https://doi.org/10.1016/j.nimb.2019.11.014},
}
@TechReport{larson1998updated,
author = {Larson, Nancy M},
institution = {Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States)},
title = {Updated users' guide for sammy multilevel R-matrix fits to neutron data using bayes' equation},
year = {1998},
}
@InProceedings{ge2020cendl,
author = {Ge, Zhigang and Xu, Ruirui and Wu, Haicheng and Zhang, Yue and Chen, Guochang and Jin, Yongli and Shu, Nengchuan and Chen, Yongjing and Tao, Xi and Tian, Yuan and others},
booktitle = {EPJ Web of Conferences},
title = {CENDL-3.2: The new version of Chinese general purpose evaluated nuclear data library},
year = {2020},
organization = {EDP Sciences},
pages = {09001},
volume = {239},
}
@TechReport{chen1990r,
author = {Chen, Zhenpeng and Qi, Huiquan},
institution = {China Nuclear Information Centre},
title = {R-matrix analysis code (RAC)},
year = {1990},
}
@Article{cai2019phasednn,
author = {Cai, Wei and Li, Xiaoguang and Liu, Lizuo},
journal = {arXiv preprint arXiv:1905.01389},
title = {Phasednn-a parallel phase shift deep neural network for adaptive wideband learning},
year = {2019},
}
@Article{cai2020phase,
author = {Cai, Wei and Li, Xiaoguang and Liu, Lizuo},
journal = {SIAM Journal on Scientific Computing},
title = {A phase shift deep neural network for high frequency approximation and wave problems},
year = {2020},
number = {5},
pages = {A3285--A3312},
volume = {42},
publisher = {SIAM},
}
@article{an2015astrophysical,
title={Astrophysical S factor of the $^{12}$C ($\alpha$, $\gamma$) $^{16}$O reaction calculated with reduced R-matrix theory},
author={An, Zhen-Dong and Chen, Zhen-Peng and Ma, Yu-Gang and Yu, Jian-Kai and Sun, Ye-Ying and Fan, Gong-Tao and Li, Yong-Jiang and Xu, Hang-Hua and Huang, Bo-Song and Wang, Kan},
journal={Physical Review C},
volume={92},
number={4},
pages={045802},
year={2015},
publisher={APS}
}
@article{xing2023study,
title={Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach},
author={XING, Kang and LIANG, Yan and SUN, Xiaojun},
journal={Atomic Energy Science and Technology},
volume={57},
number={4},
pages={713},
year={2023}
}
@article{vicente2021nuclear,
title={Nuclear data evaluation augmented by machine learning},
author={Vicente-Valdez, Pedro and Bernstein, Lee and Fratoni, Massimiliano},
journal={Annals of Nuclear Energy},
volume={163},
pages={108596},
year={2021},
publisher={Elsevier}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@article{nucleartech2023,
title = {Applications of machine learning in nuclear physics and nuclear data},
author = {Ma Yugang,Guo Bing and Zhang Yingxun},
journal = {Atmoic Energy Science and Technology},
year = {2023},
volume = {57},
number = {4}
}
@article{ma2023phase,
title={Phase transition study meets machine learning},
author={Ma, Yu-Gang and Pang, Long-Gang and Wang, Rui and Zhou, Kai},
journal={Chinese Physics Letters},
volume={40},
number={12},
pages={122101},
year={2023},
publisher={IOP Publishing}
}
@book{satchler1990introduction,
title={Introduction to nuclear reactions},
author={Satchler, George Raymond and Satchler, GR},
year={1990},
publisher={Springer}
}
@article{brown2018endf,
title={ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data},
author={Brown, David A and Chadwick, MB and Capote, R and Kahler, AC and Trkov, A and Herman, MW and Sonzogni, AA and Danon, Y and Carlson, AD and Dunn, M and others},
journal={Nuclear Data Sheets},
volume={148},
pages={1--142},
year={2018},
publisher={Elsevier}
}
@article{lane1958r,
title={R-matrix theory of nuclear reactions},
author={Lane, AM and Thomas, RG},
journal={Reviews of Modern Physics},
volume={30},
number={2},
pages={257},
year={1958},
publisher={APS}
}
@article{blatt1952angular,
title={The angular distribution of scattering and reaction cross sections},
author={Blatt, John M and Biedenharn, LC},
journal={Reviews of Modern Physics},
volume={24},
number={4},
pages={258},
year={1952},
publisher={APS}
}
@article{Rochman2013,
title={From average parameters to statistical resolved resonances},
author={Rochman, D and Koning, A.-J. and Kopecky, J. and Sublet, J.-C. and Ribon, P. and Moxon, M.},
journal={Annals of Nuclear Energy},
volume={51},
pages={60},
year={2013},
publisher={ELSEVIER}
}
@article{kunieda2014r,
title={R-matrix Analysis for n+ $^{16}$O Cross-sections up to En= 6.0 MeV with Covariances},
author={Kunieda, S and Kawano, T and Paris, M and Hale, G and Shibata, K and Fukahori, T},
journal={Nuclear Data Sheets},
volume={118},
pages={250--253},
year={2014},
publisher={Elsevier}
}
@article{kunieda2015covariance,
title={Covariance of neutron cross sections for $^{16}$O through R-matrix analysis},
author={Kunieda, S and Kawano, T and Paris, M and Hale, GM and Shibata, K and Fukahori, T},
journal={Nuclear Data Sheets},
volume={123},
pages={159--164},
year={2015},
publisher={Elsevier}
}
@article{胡泽华2023深度神经网络学习快中子截面,
title={深度神经网络学习快中子截面},
author={胡泽华 and 应阳君 and 勇珩 and 续瑞瑞},
journal={原子能科学技术},
volume={57},
number={4},
pages={812},
year={2023},
translation = {Hu, Z. H., Ying, Y. J., Yong, H., et al. (2023). Learning Fast Neutron Cross Sections Using Deep Neural Networks[J]. Atomic Energy Science \& Technology, 57(4).}
}
@article{nobre2023novel,
title={Novel machine-learning method for spin classification of neutron resonances},
author={Nobre, GPA and Brown, DA and Hollick, SJ and Scoville, S and Rodr{\'\i}guez, P},
journal={Physical Review C},
volume={107},
number={3},
pages={034612},
year={2023},
publisher={APS}
}
@article{he2023machine,
title={Machine learning in nuclear physics at low and intermediate energies},
author={He, Wanbing and Li, Qingfeng and Ma, Yugang and Niu, Zhongming and Pei, Junchen and Zhang, Yingxun},
journal={Science China Physics, Mechanics \& Astronomy},
volume={66},
number={8},
pages={282001},
year={2023},
publisher={Springer}
}
@article{he2023high,
title={High-energy nuclear physics meets machine learning},
author={He, Wan-Bing and Ma, Yu-Gang and Pang, Long-Gang and Song, Hui-Chao and Zhou, Kai},
journal={Nuclear Science and Techniques},
volume={34},
number={6},
pages={88},
year={2023},
publisher={Springer}
}