-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtraining.py
323 lines (283 loc) · 15.7 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from torch import optim
from utils.utils import *
from utils.mss_loss import multi_scale_spectrogram_loss
from models import CAW
from utils.plotters import *
import os
import random
import time
def train(params, signals_list):
if params.manual_random_seed != -1:
random.seed(params.manual_random_seed)
torch.manual_seed(params.manual_random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
fs_list = params.fs_list
n_scales = len(params.scales)
generators_list = []
noise_amp_list = []
if params.run_mode == 'inpainting':
energy_list = [(sig[mask] ** 2).mean().item() for sig, mask in zip(signals_list, params.masks)]
else:
energy_list = [(sig ** 2).mean().item() for sig in signals_list]
reconstruction_noise_list = []
output_signals = []
loss_vectors = []
for scale_idx in range(n_scales):
output_signals_single_scale, loss_vectors_single_scale, netG, reconstruction_noise_list, noise_amp = train_single_scale(
params,
signals_list,
fs_list,
generators_list,
noise_amp_list,
energy_list,
reconstruction_noise_list)
# Write fake sound
fake_sound = output_signals_single_scale['fake_signal'].squeeze()
filename = 'fake@%dHz.wav' % params.fs_list[scale_idx]
write_signal(os.path.join(params.output_folder, filename), fake_sound,
params.fs_list[scale_idx], overwrite=False)
# Write reconstructed sound
reconstructed_sound = output_signals_single_scale['reconstructed_signal'].squeeze()
filename = 'reconstructed@%dHz.wav' % params.fs_list[scale_idx]
write_signal(os.path.join(params.output_folder, filename),
reconstructed_sound, params.fs_list[scale_idx], overwrite=False)
torch.save(reconstruction_noise_list,
os.path.join(params.output_folder, 'reconstruction_noise_list.pt'))
generators_list.append(netG)
noise_amp_list.append(noise_amp)
output_signals.append(output_signals_single_scale)
loss_vectors.append(loss_vectors_single_scale)
return output_signals, loss_vectors, generators_list, noise_amp_list, energy_list, reconstruction_noise_list
def train_single_scale(params, signals_list, fs_list, generators_list, noise_amp_list, energy_list,
reconstruction_noise_list):
# Terminology: 0 is the higher scale (original signal, no downsampling). Higher scale means larger downsampling, e.g shorter signals
n_scales = len(params.scales)
current_scale = n_scales - len(generators_list) - 1
scale_idx = n_scales - current_scale - 1
input_signal = signals_list[scale_idx].to(params.device)
params.current_fs = fs_list[scale_idx]
N = len(input_signal)
if params.run_mode == 'inpainting':
current_mask = params.masks[scale_idx]
params.current_mask = current_mask
params.current_holes = torch.Tensor([(int(idx[0] / params.Fs * params.current_fs), int(idx[1] / params.Fs * params.current_fs)) for idx in params.inpainting_indices]).to(params.device)
# Create inputs
real_signal = input_signal.reshape(1, 1, N)
params.hidden_channels = params.hidden_channels_init if scale_idx == 0 else int(
params.hidden_channels_init * params.growing_hidden_channels_factor)
scale_num = n_scales - scale_idx - 1
pad_size = calc_pad_size(params)
signal_padder = nn.ConstantPad1d(pad_size, 0)
# Initialize models
netD = CAW.Discriminator(params).to(params.device)
netD.apply(CAW.weights_init)
netG = CAW.Generator(params).to(params.device)
netG.apply(CAW.weights_init)
receptive_field = calc_receptive_field(params.filter_size, params.dilation_factors, params.current_fs)
receptive_field_percent = 100 * receptive_field / 1e3 / (N / params.current_fs)
print('Signal in scale %d has %d samples, sample rate is %d[Hz].' % (
scale_num, N, params.current_fs))
print('Total receptive field is %d[msec] (%.1f%% of input).' % (receptive_field, receptive_field_percent))
with open(os.path.join(params.output_folder, 'log.txt'), 'a') as f:
f.write('*' * 30 + ' Scale ' + str(scale_num) + ' (' + str(params.current_fs) + ' [Hz]) ' + '*' * 30)
f.write('\nreceptive_field = %d[msec] (%.1f%% of input)' % (receptive_field, receptive_field_percent))
f.write('\nsignal_energy = %.4f' % energy_list[scale_idx])
if scale_idx == 0:
reconstruction_noise = get_noise(params, real_signal.shape)
else:
reconstruction_noise = torch.zeros(real_signal.shape, device=params.device)
if params.run_mode == 'inpainting':
reconstruction_noise[:, :, torch.logical_not(current_mask)] = get_noise(params, torch.nonzero(
torch.logical_not(current_mask)).shape[0]).expand(1, 1, -1).to(params.device)
reconstruction_noise = signal_padder(reconstruction_noise)
if scale_idx >= 1:
netG.load_state_dict(
torch.load('%s/netGScale%d.pth' % (params.output_folder, scale_idx - 1), map_location=params.device))
netD.load_state_dict(
torch.load('%s/netDScale%d.pth' % (params.output_folder, scale_idx - 1), map_location=params.device))
output_folder = params.output_folder
# Create optimizers
optimizerD = optim.Adam(netD.parameters(), lr=params.learning_rate, betas=(params.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=params.learning_rate, betas=(params.beta1, 0.999))
schedulerD = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerD, milestones=params.scheduler_milestones,
gamma=params.scheduler_lr_decay)
schedulerG = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerG, milestones=params.scheduler_milestones,
gamma=params.scheduler_lr_decay)
# Initialize error vectors
v_err_real = np.zeros(params.num_epochs, )
v_err_fake = np.zeros(params.num_epochs, )
v_gp = np.zeros(params.num_epochs, )
v_rec_loss = np.zeros(params.num_epochs, )
epochs_start_time = time.time()
# prepare inputs for gradient penalty
if not params.run_mode == 'inpainting':
D_out_shape = torch.Size((1, 1, N - 2 * pad_size))
_grad_outputs = torch.ones(D_out_shape, device=params.device)
grad_pen_alpha_vec = torch.rand(params.num_epochs).to(params.device)
inputs_lengths = params.inputs_lengths
for epoch_num in range(params.num_epochs):
print_progress = epoch_num % 100 == 0
# Create noise
noise_signal = get_noise(params, real_signal.shape)
noise_signal = signal_padder(noise_signal)
#################################################################
# Optimize D by maximizing D(realSignal)+(1-D(G(noise_signal))) #
#################################################################
netD.zero_grad()
# Run on real signal
if params.run_mode == 'inpainting':
out_D_real = netD(real_signal, use_mask=True)
tot_samples = out_D_real.shape[2]
params.not_valid_idx_start = [int(idx[0] - receptive_field / 1e3 * params.current_fs + 1) for idx in params.current_holes]
params.not_valid_idx_end = [int(idx[1] + 1) for idx in params.current_holes] # +1 is because of pe filter
out_D_real_cp = out_D_real.clone()
out_D_real = out_D_real_cp[:, :, :params.not_valid_idx_start[0]]
if len(params.current_holes) > 1:
for i in range(len(params.current_holes) - 1):
out_D_real = torch.cat((out_D_real, out_D_real_cp[:, :, params.not_valid_idx_end[i] + 1:params.not_valid_idx_start[i+1]]), dim=2)
out_D_real = torch.cat((out_D_real, out_D_real_cp[:, :, params.not_valid_idx_end[-1] + 1:]), dim=2)
mask_ratio = tot_samples / out_D_real.shape[2]
else:
mask_ratio = 1
out_D_real = netD(real_signal)
err_real_D = -out_D_real.mean()
err_real_D.backward(retain_graph=True)
err_real_D = err_real_D.detach()
if print_progress or params.plot_losses:
err_real_D_val = err_real_D.item()
if epoch_num == 0:
if params.run_mode == 'inpainting':
D_out_shape = out_D_real.shape
_grad_outputs = torch.ones(D_out_shape, device=params.device)
if scale_idx == 0: # We are at coarsest scale
prev_signal = torch.full(noise_signal.shape, 0, device=params.device, dtype=noise_signal.dtype)
prev_reconstructed_signal = torch.zeros(reconstruction_noise.shape, device=params.device)
noise_amp = params.initial_noise_amp
else:
prev_signal = draw_signal(params, generators_list, inputs_lengths, fs_list, noise_amp_list)
prev_signal = signal_padder(prev_signal)
prev_reconstructed_signal = draw_signal(params, generators_list, params.inputs_lengths,
fs_list,
noise_amp_list,
reconstruction_noise_list)
prev_reconstructed_signal = signal_padder(prev_reconstructed_signal)
innovation = energy_list[scale_idx] - energy_list[scale_idx - 1]
energy_diff = torch.sqrt(torch.Tensor([innovation])).to(params.device)
noise_amp = params.noise_amp_factor * max(torch.Tensor([0]).to(params.device),
energy_diff)
if scale_idx == 1 and params.add_cond_noise:
noise_amp = prev_reconstructed_signal.std()
with open(os.path.join(output_folder, 'log.txt'), 'a') as f:
f.write('\nnoise_amp: %.6f' % noise_amp)
reconstruction_noise = reconstruction_noise * noise_amp
reconstruction_noise_list.append(reconstruction_noise)
else:
if scale_idx > 0:
prev_signal = draw_signal(params, generators_list, inputs_lengths, fs_list, noise_amp_list)
prev_signal = signal_padder(prev_signal)
input_noise = noise_signal * noise_amp
# Run on fake signal
fake_signal = netG((input_noise + prev_signal).detach(), prev_signal)
out_D_fake = netD(fake_signal.detach())
err_fake_D = out_D_fake.mean()
del out_D_real, out_D_fake
err_fake_D.backward(retain_graph=True)
err_fake_D = err_fake_D.detach()
if print_progress or params.plot_losses:
err_fake_D_val = err_fake_D.item()
gradient_penalty = calc_gradient_penalty(params, netD, real_signal, fake_signal, params.lambda_grad,
grad_pen_alpha_vec[epoch_num], _grad_outputs, mask_ratio)
gradient_penalty.backward()
if print_progress or params.plot_losses:
gradient_penalty_val = gradient_penalty.item()
del gradient_penalty
optimizerD.step()
if params.plot_losses:
v_err_real[epoch_num] = err_real_D_val
v_err_fake[epoch_num] = err_fake_D_val
v_gp[epoch_num] = gradient_penalty_val
#############################################
# Update G by maximizing D(G(noise_signal)) #
#############################################
netG.zero_grad()
output = netD(fake_signal)
errG = -output.mean()
del output
errG.backward(retain_graph=True)
errG = errG.detach()
if print_progress or params.plot_losses:
errG_val = errG.item()
if scale_idx == 0:
reconstructed_signal = netG((reconstruction_noise + prev_reconstructed_signal).detach(),
prev_reconstructed_signal)
else:
reconstructed_signal = netG((reconstruction_noise + prev_reconstructed_signal).detach(),
prev_reconstructed_signal)
if params.alpha1 > 0:
if params.run_mode == 'inpainting':
rec_loss_t = params.alpha1 * torch.mean(
(real_signal[:, :, current_mask] - reconstructed_signal[:, :, current_mask]) ** 2)
else:
rec_loss_t = params.alpha1 * torch.mean((real_signal - reconstructed_signal) ** 2)
else:
rec_loss_t = 0
if params.alpha2 > 0:
rec_loss_f = params.alpha2 * multi_scale_spectrogram_loss(params, real_signal.permute(0, 2, 1),
reconstructed_signal.permute(0, 2, 1))
else:
rec_loss_f = 0
rec_loss = rec_loss_t + rec_loss_f
rec_loss.backward(retain_graph=True)
rec_loss = rec_loss.detach()
if params.alpha1 > 0:
rec_loss_t = rec_loss_t.detach()
if params.alpha2 > 0:
rec_loss_f = rec_loss_f.detach()
if print_progress or params.plot_losses:
rec_loss_val = rec_loss.item()
optimizerG.step()
if params.plot_losses:
v_rec_loss[epoch_num] = rec_loss_val
if print_progress:
print('[%d/%d] D(real): %.2f. D(fake): %.2f. rec_loss: %.4f. gp: %.4f ' % (
epoch_num, params.num_epochs, -err_real_D_val, err_fake_D_val, rec_loss_val, gradient_penalty_val))
schedulerD.step()
schedulerG.step()
# Some memory cleanup
fake_signal = fake_signal.detach()
reconstructed_signal = reconstructed_signal.detach()
if epoch_num < params.num_epochs - 1:
del fake_signal, reconstructed_signal, rec_loss, rec_loss_t, rec_loss_f
del noise_signal, input_noise
if scale_idx > 0:
del prev_signal
epochs_stop_time = time.time()
runtime_msg = 'Total time in scale %d: %d[sec] (%.2f[sec]/epoch on avg.). D(real): %f, D(fake): %f, rec_loss: %.4f. gp: %.4f' % (
current_scale, epochs_stop_time - epochs_start_time,
(epochs_stop_time - epochs_start_time) / params.num_epochs,
-err_real_D_val, err_fake_D_val, rec_loss_val, gradient_penalty_val)
print(runtime_msg)
with open(os.path.join(output_folder, 'log.txt'), 'a') as f:
f.write('\n%s\n' % runtime_msg)
# Save this scale models
torch.save(netG.state_dict(), '%s/netGScale%d.pth' % (params.output_folder, scale_idx))
torch.save(netD.state_dict(), '%s/netDScale%d.pth' % (params.output_folder, scale_idx))
# Pack outputs
if params.plot_losses:
loss_vectors = {'v_err_real': v_err_real,
'v_err_fake': v_err_fake,
'v_rec_loss': v_rec_loss,
'v_gp': v_gp}
else:
loss_vectors = []
fake_signal = fake_signal.detach().cpu().numpy()[:, 0, :]
reconstructed_signal = reconstructed_signal.detach().cpu().numpy()[:, 0, :]
output_signals = {'fake_signal': fake_signal, 'reconstructed_signal': reconstructed_signal}
del fake_signal, real_signal, netD, _grad_outputs, grad_pen_alpha_vec, input_signal, reconstructed_signal, prev_reconstructed_signal, reconstruction_noise
netG = reset_grads(netG, False)
netG.eval()
if params.is_cuda:
torch.cuda.empty_cache()
print('*' * 30 + ' Finished working on scale ' + str(current_scale) + ' ' + '*' * 30)
return output_signals, loss_vectors, netG, reconstruction_noise_list, noise_amp