-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathparams.py
51 lines (47 loc) · 1.8 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
class Params(object):
def __init__(self):
######################
# Running Parameters #
######################
self.start_time = 0
self.segments_to_train = []
self.min_length = 20
self.max_length = 25
self.plot_signals = False
self.manual_random_seed = -1 # -1 for no setting
self.plot_losses = False
self.init_sample_rate = 16000
self.fs_list = [320, 400, 500, 640, 800, 1000, 1280, 1600, 2000, 2500, 4000, 8000, 10000, 12000, 14400, 16000]
self.run_mode = 'normal'
self.speech = False
self.set_first_scale_by_energy = True
self.add_cond_noise = True
self.min_energy_th = 0.0025 # minimum mean energy for first scale
self.is_cuda = torch.cuda.is_available()
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.initial_noise_amp = 1
self.noise_amp_factor = 0.01
#####################
# Losses Parameters #
#####################
self.lambda_grad = 0.01
self.alpha1 = 10
self.alpha2 = 1e-4
self.multispec_loss_n_fft = (2048, 1024, 512)
self.multispec_loss_hop_length = (240, 120, 50)
self.multispec_loss_window_size = (1200, 600, 240)
###########################
# Optimization Parameters #
###########################
self.num_epochs = 2000
self.learning_rate = 0.0015
self.scheduler_lr_decay = 0.1
self.beta1 = 0.5
####################
# Model Parameters #
####################
self.filter_size = 9
self.num_layers = 8
self.hidden_channels_init = 16
self.growing_hidden_channels_factor = 6