-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBrainPulseAPP.py
260 lines (193 loc) · 11.2 KB
/
BrainPulseAPP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from cProfile import run
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from complexRadar import ComplexRadar
import math
from zipfile import ZipFile
from glob import glob
import os
from BrainPulse import (dataset,
vector_space,
distance_matrix,
recurrence_quantification_analysis,
features_space,
plot)
# path
path = "./mne_data"
path2 = "./RPs"
# Remove the specified
# file path
try:
os.remove(path)
print("% s removed successfully" % path)
except:
pass
path = "./mne_data"
os.makedirs(path, exist_ok = True)
path1 = "./RPs"
os.makedirs(path1, exist_ok = True)
def run_computation(t_start, t_end, selected_subject, fir_filter, electrode_name, cut_freq, win_len, n_fft, percentile, run_list, options):
epochs, raw = dataset.eegbci_data(tmin=t_start, tmax=t_end,
subject=selected_subject,
filter_range=fir_filter,run_list=run_list)
s_rate = epochs.info['sfreq']
electrode_index = epochs.ch_names.index(electrode_name)
electrode_open = epochs.get_data()[0][electrode_index]
electrode_close = epochs.get_data()[1][electrode_index]
stft_open = vector_space.compute_stft(electrode_open,
n_fft=n_fft, win_len=win_len,
s_rate=epochs.info['sfreq'],
cut_freq=cut_freq)
stft_close = vector_space.compute_stft(electrode_close,
n_fft=n_fft, win_len=win_len,
s_rate=epochs.info['sfreq'],
cut_freq=cut_freq)
del raw
del electrode_open, electrode_close
# matrix_open = distance_matrix.EuclideanPyRQA_RP_stft(stft_open)
# matrix_close = distance_matrix.EuclideanPyRQA_RP_stft(stft_close)
matrix_open = distance_matrix.EuclideanPyRQA_RP_stft_cpu(stft_open)
matrix_close = distance_matrix.EuclideanPyRQA_RP_stft_cpu(stft_close)
nbr_open = np.percentile(matrix_open, percentile)
nbr_close = np.percentile(matrix_close, percentile)
matrix_open_binary = distance_matrix.set_epsilon(matrix_open,nbr_open)
matrix_close_binary = distance_matrix.set_epsilon(matrix_close,nbr_close)
del matrix_open, matrix_close
# matrix_open_to_plot = matrix_open_binary
# matrix_closed_to_plot = matrix_close_binary
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,figsize=(16,8),dpi=200)
ax1.imshow(matrix_open_binary, cmap='Greys', origin='lower') #cividis
ax1.set_xticks(np.linspace(0, matrix_open_binary.shape[0] , ax1.get_xticks().shape[0]))
ax1.set_yticks(np.linspace(0, matrix_open_binary.shape[0] , ax1.get_xticks().shape[0]))
ax1.set_xticklabels([str(np.around(x,decimals=0)) for x in np.linspace(0, matrix_open_binary.shape[0] / s_rate, ax1.get_xticks().shape[0])])
ax1.set_yticklabels([str(np.around(x, decimals=0)) for x in np.linspace(0, matrix_open_binary.shape[0] / s_rate, ax1.get_yticks().shape[0])])
ax1.set_title(options[0]+' window size = 240 samples, ε = '+str(np.round(nbr_open,4)))
ax1.set_xlabel('time (s)')
ax1.set_ylabel('time (s)')
ax2.imshow(matrix_close_binary, cmap='Greys', origin='lower')
ax2.set_xticks(np.linspace(0, matrix_close_binary.shape[0] , ax1.get_xticks().shape[0]))
ax2.set_yticks(np.linspace(0, matrix_close_binary.shape[0] , ax1.get_xticks().shape[0]))
ax2.set_xticklabels([str(np.around(x,decimals=0)) for x in np.linspace(0, matrix_close_binary.shape[0] / s_rate, ax1.get_xticks().shape[0])])
ax2.set_yticklabels([str(np.around(x, decimals=0)) for x in np.linspace(0, matrix_close_binary.shape[0] / s_rate, ax2.get_yticks().shape[0])])
ax2.set_title(options[1]+' window size = 240 samples, ε = '+str(np.round(nbr_close,4)))
ax2.set_xlabel('time (s)')
ax2.set_ylabel('time (s)')
return fig, matrix_open_binary, matrix_close_binary, epochs, stft_open, stft_close
def plot_rqa(matrix_open_binary, matrix_close_binary, min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len,options):
categories = ['RR', 'DET', 'L', 'Lmax', 'DIV', 'Lentr', 'DET_RR', 'LAM', 'V', 'Vmax', 'Ventr', 'LAM_DET', 'W', 'Wmax', 'Wentr', 'TT']
result_rqa_open = recurrence_quantification_analysis.get_results(matrix_open_binary,min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len)
result_rqa_closed = recurrence_quantification_analysis.get_results(matrix_close_binary,min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len)
data = pd.DataFrame([result_rqa_open,result_rqa_closed], columns=categories)
data = data.drop(['RR', 'DIV', 'Lmax'],axis=1)
# print(data)
min_max_per_variable = data.describe().T[['min', 'max']]
min_max_per_variable['min'] = min_max_per_variable['min'].apply(lambda x: int(x))
min_max_per_variable['max'] = min_max_per_variable['max'].apply(lambda x: math.ceil(x))
# print(min_max_per_variable)
variables = data.columns
ranges = list(min_max_per_variable.itertuples(index=False, name=None))
format_cfg = {
#'axes_args':{'facecolor':'#84A8CD'},
'rad_ln_args': {'visible':True, 'linestyle':'dotted'},
'angle_ln_args':{'linestyle':'dotted'},
'outer_ring': {'visible':True, 'linestyle':'dotted'},
'rgrid_tick_lbls_args': {'fontsize':6},
'theta_tick_lbls': {'fontsize':9, 'backgroundcolor':'#355C7D', 'color':'#FFFFFF'},
'theta_tick_lbls_pad':3
}
fig = plt.figure(figsize=(5,3),dpi=100)
radar = ComplexRadar(fig, variables, ranges,n_ring_levels=3 ,show_scales=True, format_cfg=format_cfg)
custom_colors = ['#F67280', '#6C5B7B', '#355C7D']
k=0
for g,c in zip(data.index, custom_colors):
# radar.plot(data.loc[g].values, label=f"condition {g}", color=c, marker='o')
radar.plot(data.loc[g].values, label=options[k], color=c, marker='o')
radar.fill(data.loc[g].values, alpha=0.5, color=c)
k+=1
radar.use_legend(loc='upper left', bbox_to_anchor=(-0.4, 1.1), fontsize = 'xx-small') #, bbox_to_anchor=(0.15, -0.25),ncol=radar.plot_counter
return fig
def waterfall_spectrum(stft1, stft2, s_rate, cut_freq, options):
fig = plt.figure(figsize=(14, 12), dpi=150)
grid = plt.GridSpec(8, 8, hspace=0.0, wspace=3.5)
spectrogram1 = fig.add_subplot(grid[0:3, 0:4])
spectrogram2 = fig.add_subplot(grid[0:3, 4:])
spectrogram1.pcolormesh(stft1.T,cmap='viridis')
spectrogram1.xaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft1.shape[0], 5)))
spectrogram1.set_xticklabels([str(np.round(x, 1)) for x in np.linspace(0, stft1.shape[0] / s_rate, spectrogram1.get_xticks().shape[0])])
spectrogram1.yaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft1.shape[1], 5)))
spectrogram1.set_yticklabels([str(np.round(x, 1)) for x in np.linspace(0, cut_freq, 5)])
spectrogram1.set_ylabel('Freq (Hz)', )
spectrogram1.set_xlabel('Time (s)', )
spectrogram1.set_title(options[0] + ' Spectrogram', )
spectrogram2.pcolormesh(stft2.T,cmap='viridis')
spectrogram2.xaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft2.shape[0], 5)))
spectrogram2.set_xticklabels([str(np.round(x, 1)) for x in np.linspace(0, stft2.shape[0] / s_rate, spectrogram2.get_xticks().shape[0])])
spectrogram2.yaxis.set_major_locator(matplotlib.ticker.FixedLocator(np.linspace(0, stft2.shape[1], 5)))
spectrogram2.set_yticklabels([str(np.round(x, 1)) for x in np.linspace(0, cut_freq, 5)])
spectrogram2.set_ylabel('Freq (Hz)', )
spectrogram2.set_xlabel('Time (s)', )
spectrogram2.set_title(options[1] +' Spectrogram', )
return fig
def save(matrix_open_binary, matrix_close_binary):
file_name_open = './RPs/subject-'+str(selected_subject)+'_electrode-'+electrode_name+'_percentile-'+str(percentile)+'_run-open_binary.npy'
np.save(file_name_open, np.asarray(matrix_close_binary, dtype=np.ubyte))
file_name_close = './RPs/subject-'+str(selected_subject)+'_electrode-'+electrode_name+'_percentile-'+str(percentile)+'_run-close_binary.npy'
np.save(file_name_close, np.asarray(matrix_close_binary, dtype=np.ubyte))
def download():
file_paths = glob('./RPs/*')
with ZipFile('download.zip','w') as zip:
for file in file_paths:
# writing each file one by one
zip.write(file)
return open('download.zip', 'rb')
# ---------------Settings--------------------
st.set_page_config(layout="wide")
st.title('BrainPulse Playground')
sidebar = st.sidebar
selected_subject = sidebar.slider('Select Subject', 0, 100, 25)
electrode_name = sidebar.selectbox(
'Select Electrode',
('FC5', 'FC3', 'FC1', 'FCz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Fp1', 'Fpz', 'Fp2', 'AF7', 'AF3', 'AFz', 'AF4', 'AF8', 'F7', 'F5', 'F3', 'F1', 'Fz', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FT8', 'T7', 'T8', 'T9', 'T10', 'TP7', 'TP8', 'P7', 'P5', 'P3', 'P1', 'Pz', 'P2', 'P4', 'P6', 'P8', 'PO7', 'PO3', 'POz', 'PO4', 'PO8', 'O1', 'Oz', 'O2', 'Iz'))
t_start, t_end = sidebar.slider(
'Select a time range in seconds',
0, 60, (0, 30), step=1)
f1, f2 = sidebar.slider(
'Select a FIR filter range',
0, 60, (2, 50), step=1)
fir_filter = [f1, f2]
cut_freq = f2
win_len = sidebar.slider('FFT window size', 0, 512, 170, step=1)
n_fft = sidebar.slider('numer of FFT bins', 0, 1024, 512, step=1)
min_vert_line_len = sidebar.slider('Minimum vertical line length', 0, 250, 2, step=1)
min_diagonal_line_len = sidebar.slider('Minimum diagonal line length', 0, 250, 2, step=1)
min_white_vert_line_len = sidebar.slider('Minimum white vertical line length', 0, 250, 2, step=1)
percentile = sidebar.slider('Precentile', 0, 100, 24, step=1)
sidebar.download_button('Download file', download(),file_name='archive.zip')
# ---------------Plot RPs--------------------
# runs_ = ['Baseline open eyes', 'Baseline closed eyes', 'Motor execution: left vs right hand', 'Motor imagery: left vs right hand',
# 'Motor execution: hands vs feet', 'Motor imagery: hands vs feet']
#
# options = st.multiselect('Select two runs to compare', runs_, ['Baseline open eyes', 'Baseline closed eyes'])
# run_list = []
#
# for v in options:
# run_list.append(runs_.index(v)+1)
# if len(run_list) <= 1:
# run_list = [1,2]
st.markdown('Baseline open eyes vs Baseline closed eyes')
options = ['Baseline open eyes', 'Baseline closed eyes']
run_list = [1,2]
rp_plot, matrix_open_binary, matrix_close_binary, epochs, stft1, stft2 = run_computation(t_start, t_end, selected_subject, fir_filter, electrode_name, cut_freq, win_len, n_fft, percentile, run_list,options)
st.write(rp_plot)
# ---------------Plot Spectrum--------------------
st.write(waterfall_spectrum(stft1, stft2, 160, cut_freq, options))
# ---------------Save RPs--------------------
if st.button('Save RPs as *.npy'):
save(matrix_open_binary, matrix_close_binary)
# ---------------Plot Radar--------------------
rqa_radar = plot_rqa(matrix_open_binary, matrix_close_binary, min_vert_line_len, min_diagonal_line_len, min_white_vert_line_len, options)
st.write(rqa_radar)