-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupscale.py
352 lines (275 loc) · 19.2 KB
/
upscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#UPSCALE.PY
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers, Model
import tensorlayer as tl
import time
import pathlib
from matplotlib import pyplot as plt
from skimage import measure
from imutils import paths
import argparse
import cv2
str_data_dir = './dataset/train'
AUTOTUNE = tf.data.experimental.AUTOTUNE
data_dir = pathlib.Path(str_data_dir)
image_count = len(list(data_dir.glob('*.jpg')))
BATCH_SIZE = 1
HR_IMG_HEIGHT = 96
HR_IMG_WIDTH = 96
DOWNSAMPLING_FACTOR = 4
LR_IMG_HEIGHT = HR_IMG_HEIGHT/DOWNSAMPLING_FACTOR
LR_IMG_WIDTH = HR_IMG_WIDTH/DOWNSAMPLING_FACTOR
STEPS_PER_EPOCH = np.ceil(image_count/BATCH_SIZE)
NUM_CHANNELS = 3
B = 4
from subpixel import SubpixelConv2D, Subpixel
def make_sr_generator_model(name):
lr_img = layers.Input(shape=(None, None, NUM_CHANNELS))
#lr_img = layers.Input(shape=(1080, 1080, NUM_CHANNELS))
################################################################################
## Now that we have a low res image, we can start the actual generator ResNet ##
################################################################################
x = layers.Convolution2D(64, (9,9), (1,1), padding='same')(lr_img)
x = layers.ReLU()(x)
b_prev = x
#####################
## Residual Blocks ##
#####################
for i in range(B):
b_curr = layers.Convolution2D(64, (3,3), (1,1), padding='same')(b_prev)
b_curr = layers.BatchNormalization()(b_curr)
b_curr = layers.ReLU()(b_curr)
b_curr = layers.Convolution2D(64, (3,3), (1,1), padding='same')(b_curr)
b_curr = layers.BatchNormalization()(b_curr)
b_curr = layers.Add()([b_prev, b_curr]) #skip connection
b_prev = b_curr
res_out = b_curr # Output of residual blocks
x2 = layers.Convolution2D(64, (3,3), (1,1), padding='same')(res_out)
x2 = layers.BatchNormalization()(x2)
x = layers.Add()([x, x2]) #skip connection
#######################################################
## Resolution-enhancing sub-pixel convolution layers ##
#######################################################
# Layer 1 (Half of the upsampling)
x = layers.Convolution2D(256, (3,3), (1,1), padding='same')(res_out)
x = SubpixelConv2D(input_shape=(None, None, None, NUM_CHANNELS), scale=DOWNSAMPLING_FACTOR/2, idx=0)(x)
#x = Subpixel(256, kernel_size=(3,3), r=DOWNSAMPLING_FACTOR/2, padding='same', strides=(1,1))
x = layers.ReLU()(x)
# Layer 2 (Second half of the upsampling)
x = layers.Convolution2D(256, (3,3), (1,1), padding='same')(x)
x = SubpixelConv2D(input_shape=(None, None, None, NUM_CHANNELS/((DOWNSAMPLING_FACTOR/2) ** 2)), scale=(DOWNSAMPLING_FACTOR/2), idx=1)(x)
#x = Subpixel(256, kernel_size=(3,3), r=DOWNSAMPLING_FACTOR/2, padding='same', strides=(1,1))
x = layers.ReLU()(x)
generated_sr_image = layers.Convolution2D(3, (9,9), (1,1), padding='same')(x)
output_shape = generated_sr_image.get_shape().as_list()
#assert output_shape == [None, HR_IMG_HEIGHT, HR_IMG_WIDTH, NUM_CHANNELS]
return Model(inputs=lr_img, outputs=generated_sr_image, name=name)
def make_sr_discriminator_model():
inputs = layers.Input(shape=(HR_IMG_HEIGHT, HR_IMG_WIDTH, NUM_CHANNELS))
# k3n64s1
x = layers.Convolution2D(64, (3,3), (1,1), padding='same')(inputs)
x = layers.LeakyReLU(alpha=0.2)(x)
#################
## Conv Blocks ##
#################
# k3n64s2
x = layers.Convolution2D(64, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n128s1
x = layers.Convolution2D(128, (3,3), (1,1), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n128s2
x = layers.Convolution2D(128, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n256s1
x = layers.Convolution2D(256, (3,3), (1,1), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n256s2
x = layers.Convolution2D(256, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n512s1
x = layers.Convolution2D(512, (3,3), (1,1), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n512s2
x = layers.Convolution2D(512, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
################
## Dense Tail ##
################
x = layers.Dense(1024)(x)
x = layers.LeakyReLU(alpha=0.2)(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
return Model(inputs=inputs, outputs=outputs, name='discriminator')
discriminator = make_sr_discriminator_model()
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
generator = make_sr_generator_model('generator')
#generator.summary()
models = ['./training_checkpoints', './vggan_training_checkpoints']
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
#status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
status = checkpoint.restore('./training_checkpoints/ckpt-15')
print(tf.train.latest_checkpoint(checkpoint_dir))
vgg_generator_optimizer = tf.keras.optimizers.Adam(1e-4)
vgg_discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
vgg_generator = make_sr_generator_model('vgg_generator')
vgg_checkpoint_dir = './vggan_training_checkpoints'
vgg_checkpoint_prefix = os.path.join(vgg_checkpoint_dir, "ckpt")
vgg_checkpoint = tf.train.Checkpoint(generator_optimizer=vgg_generator_optimizer,
discriminator_optimizer=vgg_discriminator_optimizer,
generator=vgg_generator,
discriminator=discriminator)
#vgg_status = vgg_checkpoint.restore(tf.train.latest_checkpoint(vgg_checkpoint_dir))
vgg_status = vgg_checkpoint.restore('./vggan_training_checkpoints/ckpt-15')
print(tf.train.latest_checkpoint(vgg_checkpoint_dir))
ssim_generator_optimizer = tf.keras.optimizers.Adam(1e-4)
ssim_discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
ssim_generator = make_sr_generator_model('ssim_generator')
ssim_checkpoint_dir = './ssim_training_checkpoints'
ssim_checkpoint_prefix = os.path.join(ssim_checkpoint_dir, "ckpt")
ssim_checkpoint = tf.train.Checkpoint(generator_optimizer=ssim_generator_optimizer,
discriminator_optimizer=ssim_discriminator_optimizer,
generator=ssim_generator,
discriminator=discriminator)
#ssim_status = ssim_checkpoint.restore(tf.train.latest_checkpoint(ssim_checkpoint_dir))
ssim_status = ssim_checkpoint.restore('./ssim_training_checkpoints/ckpt-15')
print(tf.train.latest_checkpoint(ssim_checkpoint_dir))
models = [generator, vgg_generator, ssim_generator]
#generator.summary()
#print(generator.layers[0])
#input_layer = tf.keras.layers.InputLayer(input_shape=(1080,1080,3), name = "input-1")
#generator.layers[0] = input_layer
#print(generator.layers[28])
#print(generator.layers[31])
#generator.layers[28] = SubpixelConv2D(input_shape=(None, 1080, 1080, NUM_CHANNELS), scale=DOWNSAMPLING_FACTOR/2, idx=0)
#generator.layers[31] = SubpixelConv2D(input_shape=(None, 1080*(DOWNSAMPLING_FACTOR/2), 1080*(DOWNSAMPLING_FACTOR/2), NUM_CHANNELS/((DOWNSAMPLING_FACTOR/2) ** 2)), scale=(DOWNSAMPLING_FACTOR/2), idx=1)
def decode_img(img):
# convert the compressed string to a 3D uint8 tensor
img = tf.image.decode_jpeg(img, channels=3)
# Use `convert_image_dtype` to convert to floats in the [0,1] range.
img = tf.image.convert_image_dtype(img, tf.float32)
return img
# resize the image to the desired size.
#return tf.image.crop_to_bounding_box(img, offset_height=0, offset_width=0, target_height=IMG_HEIGHT, target_width=IMG_WIDTH)
# return tf.image.random_crop(img,[270,270,3])
def process_path(file_path):
# load the raw data from the file as a string
img = tf.io.read_file(file_path)
img = decode_img(img)
return img
def normalize(t):
return (t - tf.reduce_min(t))/(tf.reduce_max(t)-tf.reduce_min(t))
#tf.print("Generating low res images")
#lr_images = process_path('./dataset/dev/Blur13_1/1_gb13.jpg')
def generate_gaussian_kernel(shape=(3,3),sigma=0.8):
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m,n = [(ss-1.)/2. for ss in shape]
y,x = np.ogrid[-m:m+1,-n:n+1]
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
# Gaussian Blur Setup
BLUR_KERNEL_SIZE = 3
kernel_weights = generate_gaussian_kernel()
# Size compatibility code
kernel_weights = np.expand_dims(kernel_weights, axis=-1)
kernel_weights = np.repeat(kernel_weights, NUM_CHANNELS, axis=-1) # apply the same filter on all the input channels
kernel_weights = np.expand_dims(kernel_weights, axis=-1) # for shape compatibility reasons
# Blur
blur_layer = layers.DepthwiseConv2D(BLUR_KERNEL_SIZE, use_bias=False, padding='same')
# Downsample
downsample_layer = layers.AveragePooling2D(pool_size=(DOWNSAMPLING_FACTOR, DOWNSAMPLING_FACTOR))
############################################# BLUR AND DOWNSAMPLE LAYERS #############################################
################################################### MODEL CREATION ##################################################
def make_downsampler_model():
hr_img = layers.Input(shape=(None, None, NUM_CHANNELS))
lr_img = blur_layer(hr_img)
lr_img = downsample_layer(lr_img)
return Model(inputs=hr_img, outputs=lr_img, name='downsampler')
downsampler = make_downsampler_model()
blur_layer.set_weights([kernel_weights])
blur_layer.trainable = False # the weights should not change during training
path_template = 'dataset/dev/Orig/{}_orig.jpg'
for i in range(1,11):
for m in range(len(models)):
print("Reading in image ".format(i))
lr_images = process_path(path_template.format(i))
lr_images_input = tf.expand_dims(lr_images, 0)
lr_images_input = tf.image.crop_to_bounding_box(lr_images_input, 0, 0, 1080, 1080)
#print(lr_images_input)
lr_images = downsampler(lr_images_input, training = False)
#print(lr_images)
#PIL.Image.fromarray(np.asarray(lr_images)).show()
#plt.imsave("lr_images2.png", np.array(lr_images, dtype=np.float32))
#uint8
print("Generating image {} with model {}".format(i, m))
#lr_images_input = tf.expand_dims(lr_images, 0)
generated_images = None
if m == 0:
generated_images = generator(lr_images, training=False)
elif m == 1:
generated_images = vgg_generator(lr_images, training=False)
elif m == 2:
generated_images = ssim_generator(lr_images, training=False)
generated_images = normalize(generated_images)
print("Image Generated")
plt.imsave("results/model_{}_original_cropped_{}.png".format(m,i), np.array(lr_images_input[0], dtype=np.float32))
#print(generated_images)
plt.imsave("results/model_{}_downsample_cropped_{}.png".format(m,i), np.array(lr_images[0], dtype=np.float32))
ds_size = tf.image.resize(lr_images, (1080, 1080))
#print(ds_size.shape)
plt.imsave("results/model_{}_downsample_resized_{}.png".format(m,i), np.array(ds_size[0], dtype=np.float32))
generated_images = tf.image.adjust_saturation(generated_images, 0.5)
plt.imsave("results/model_{}_gen_cropped_{}.png".format(m,i), np.array(generated_images[0], dtype=np.float32))
#print(generated_images.shape, lr_images_input.shape)
out_orig = measure.compare_ssim(np.array(lr_images_input[0], dtype=np.float32), np.array(generated_images[0], dtype=np.float32), multichannel = True)
inp_out = measure.compare_ssim(np.array(ds_size[0], dtype=np.float32), np.array(generated_images[0], dtype=np.float32), multichannel = True)
inp_orig = measure.compare_ssim(np.array(ds_size[0], dtype=np.float32), np.array(lr_images_input[0], dtype=np.float32), multichannel = True)
print("[Model {}] Structural similarity between original image {} and output of model is: ".format(m,i) + str(out_orig))
print("[Model {}] Structural similarity between downsampled img {} and output of model is: ".format(m,i) + str(inp_out))
print("[Model {}] Structural similarity between original image and downsampled img {} is: ".format(m,i) + str(inp_orig))
print("[Model {}] Structural similarity difference to original image {} is: ".format(m,i) + str(out_orig - inp_orig))
psnr_orig = tf.image.psnr(lr_images_input[0], generated_images[0], max_val = 255)
psnr_inp = tf.image.psnr(ds_size[0], lr_images_input[0], max_val = 255)
psnr_ds = tf.image.psnr(ds_size[0], generated_images[0], max_val = 255)
tf.print("[Model {}] PSNR between original image {} and output of model is: ".format(m,i) + str(psnr_orig.numpy()))
tf.print("[Model {}] PSNR between downsampled img {} and output of model is: ".format(m,i) + str(psnr_ds.numpy()))
tf.print("[Model {}] PSNR between original image and downsampled img {} is: ".format(m,i) + str(psnr_inp.numpy()))
tf.print("[Model {}] PSNR difference to original image {} is: ".format(m,i) + str(psnr_orig.numpy() - psnr_inp.numpy()))
orig_cropped_img = cv2.imread("results/model_{}_original_cropped_{}.png".format(m,i))
orig_cropped_gray = cv2.cvtColor(orig_cropped_img, cv2.COLOR_BGR2GRAY)
orig_cropped_fm = cv2.Laplacian(orig_cropped_gray, cv2.CV_32F).var()
down_img = cv2.imread("results/model_{}_downsample_resized_{}.png".format(m,i))
down_gray = cv2.cvtColor(down_img, cv2.COLOR_BGR2GRAY)
down_fm = cv2.Laplacian(down_gray, cv2.CV_32F).var()
gen_cropped_img = cv2.imread("results/model_{}_gen_cropped_{}.png".format(m,i))
gen_cropped_gray = cv2.cvtColor(gen_cropped_img, cv2.COLOR_BGR2GRAY)
gen_cropped_fm = cv2.Laplacian(gen_cropped_gray, cv2.CV_32F).var()
print("[Model {}] Focus Measure of original image {} is: ".format(m,i) + str(orig_cropped_fm))
print("[Model {}] Focus Measure of downsampled image {} is: ".format(m,i) + str(down_fm))
print("[Model {}] Focus Measure of output of model is: ".format(m,i) + str(gen_cropped_fm))