forked from pytorch/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWORKSPACE
147 lines (122 loc) · 5.16 KB
/
WORKSPACE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
workspace(name = "Torch-TensorRT")
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")
http_archive(
name = "rules_python",
sha256 = "778197e26c5fbeb07ac2a2c5ae405b30f6cb7ad1f5510ea6fdac03bded96cc6f",
url = "https://github.com/bazelbuild/rules_python/releases/download/0.2.0/rules_python-0.2.0.tar.gz",
)
load("@rules_python//python:pip.bzl", "pip_install")
http_archive(
name = "rules_pkg",
sha256 = "038f1caa773a7e35b3663865ffb003169c6a71dc995e39bf4815792f385d837d",
urls = [
"https://mirror.bazel.build/github.com/bazelbuild/rules_pkg/releases/download/0.4.0/rules_pkg-0.4.0.tar.gz",
"https://github.com/bazelbuild/rules_pkg/releases/download/0.4.0/rules_pkg-0.4.0.tar.gz",
],
)
load("@rules_pkg//:deps.bzl", "rules_pkg_dependencies")
rules_pkg_dependencies()
git_repository(
name = "googletest",
commit = "703bd9caab50b139428cea1aaff9974ebee5742e",
remote = "https://github.com/google/googletest",
shallow_since = "1570114335 -0400",
)
# External dependency for torch_tensorrt if you already have precompiled binaries.
local_repository(
name = "torch_tensorrt",
path = "/opt/conda/lib/python3.8/site-packages/torch_tensorrt"
)
# CUDA should be installed on the system locally
new_local_repository(
name = "cuda",
build_file = "@//third_party/cuda:BUILD",
path = "/usr/local/cuda-11.3/",
)
new_local_repository(
name = "cublas",
build_file = "@//third_party/cublas:BUILD",
path = "/usr",
)
#############################################################################################################
# Tarballs and fetched dependencies (default - use in cases when building from precompiled bin and tarballs)
#############################################################################################################
http_archive(
name = "libtorch",
build_file = "@//third_party/libtorch:BUILD",
sha256 = "8d9e829ce9478db4f35bdb7943308cf02e8a2f58cf9bb10f742462c1d57bf287",
strip_prefix = "libtorch",
urls = ["https://download.pytorch.org/libtorch/cu113/libtorch-cxx11-abi-shared-with-deps-1.11.0%2Bcu113.zip"],
)
http_archive(
name = "libtorch_pre_cxx11_abi",
build_file = "@//third_party/libtorch:BUILD",
sha256 = "90159ecce3ff451f3ef3f657493b6c7c96759c3b74bbd70c1695f2ea2f81e1ad",
strip_prefix = "libtorch",
urls = ["https://download.pytorch.org/libtorch/cu113/libtorch-shared-with-deps-1.11.0%2Bcu113.zip"],
)
# Download these tarballs manually from the NVIDIA website
# Either place them in the distdir directory in third_party and use the --distdir flag
# or modify the urls to "file:///<PATH TO TARBALL>/<TARBALL NAME>.tar.gz
http_archive(
name = "cudnn",
build_file = "@//third_party/cudnn/archive:BUILD",
sha256 = "0e5d2df890b9967efa6619da421310d97323565a79f05a1a8cb9b7165baad0d7",
strip_prefix = "cuda",
urls = [
"https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.2.4/11.4_20210831/cudnn-11.4-linux-x64-v8.2.4.15.tgz",
],
)
http_archive(
name = "tensorrt",
build_file = "@//third_party/tensorrt/archive:BUILD",
sha256 = "826180eaaecdf9a7e76116855b9f1f3400ea9b06e66b06a3f6a0747ba6f863ad",
strip_prefix = "TensorRT-8.2.4.2",
urls = [
"https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/8.2.4/tars/tensorrt-8.2.4.2.linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz",
],
)
####################################################################################
# Locally installed dependencies (use in cases of custom dependencies or aarch64)
####################################################################################
# NOTE: In the case you are using just the pre-cxx11-abi path or just the cxx11 abi path
# with your local libtorch, just point deps at the same path to satisfy bazel.
# NOTE: NVIDIA's aarch64 PyTorch (python) wheel file uses the CXX11 ABI unlike PyTorch's standard
# x86_64 python distribution. If using NVIDIA's version just point to the root of the package
# for both versions here and do not use --config=pre-cxx11-abi
#new_local_repository(
# name = "libtorch",
# path = "/usr/local/lib/python3.6/dist-packages/torch",
# build_file = "third_party/libtorch/BUILD"
#)
#new_local_repository(
# name = "libtorch_pre_cxx11_abi",
# path = "/usr/local/lib/python3.6/dist-packages/torch",
# build_file = "third_party/libtorch/BUILD"
#)
#new_local_repository(
# name = "cudnn",
# path = "/usr/",
# build_file = "@//third_party/cudnn/local:BUILD"
#)
#new_local_repository(
# name = "tensorrt",
# path = "/usr/",
# build_file = "@//third_party/tensorrt/local:BUILD"
#)
# #########################################################################
# # Testing Dependencies (optional - comment out on aarch64)
# #########################################################################
# pip_install(
# name = "torch_tensorrt_py_deps",
# requirements = "//py:requirements.txt",
# )
# pip_install(
# name = "py_test_deps",
# requirements = "//tests/py:requirements.txt",
# )
pip_install(
name = "pylinter_deps",
requirements = "//tools/linter:requirements.txt",
)