-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy path__main__.py
317 lines (285 loc) · 13.5 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import sys, os, traceback
import math, io
import itertools, getopt
import json, zlib, random
import urllib.request
# pip install opencv-contrib-python
import numpy, cv2
# Result from yielded frame
def inference( frame_generator ):
# Guess copyright
grouped, results = [], []
previous = None
for framecounter, (frame, offset) in enumerate(frame_generator):
assert type(frame) is numpy.ndarray and frame.shape[2] == 3
# ask
lookup = postframe(frame)
if lookup is None:
continue
# yield server-result
if previous:
yield *previous, None
previous = frame, offset, lookup
# ignore if frame too common
if len(lookup) >= 20:
continue
# whitelist result if frame also in trailer/teaser/...
lookup_whitelist = [result for result in lookup if not any(True for f in result['frames'] if f['type'] == 'trailer')]
if not lookup_whitelist:
continue
# group by uri (3 matches -> unlikely false positive)
results.append(lookup_whitelist)
grouped = [list(group) for k, group in
itertools.groupby(sorted([item for result in results for item in result], key=lambda x: x['uri']), lambda x: x['uri'])]
grouped.sort(key=lambda x:len(x), reverse=True)
if len(set(frame['offset'] for result in grouped[0] for frame in result['frames'] if frame['matrix'] is not None)) >= 3:
break
if not previous:
return
# To filter, or not to filter: that is the question...
copyrights = []
for group in grouped:
copyright = False
# video: accurate if 3 different frame-offset
if len(set(frame['offset'] for result in group for frame in result['frames'] if frame['matrix'] is not None)) >= 3:
copyright = True
# still-image or short-video: if matches 'image' or translation-matrix + perceptual-hash
elif framecounter <= 2 and any(True for result in group for frame in result['frames'] if
frame['type'] == 'image' or (frame['matrix'] is not None and frame['hamming'] is not None)):
copyright = True
if copyright:
copyrights.append(group[0])
yield *previous, copyrights or None
# ask server
def postframe( frame ):
# filepath or numpy.array
assert type(frame) is numpy.ndarray
res, pngimage = cv2.imencode('.png', frame)
content_type = 'image/png'
filename = 'frame.png'
filedata = pngimage.tobytes()
# https://bugs.python.org/issue3244
url = 'https://framespot.com/'
boundary = ''.join(random.choices('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz', k=70)) # RFC2046: boundary must be no longer than 70 characters
headers = {
'Content-Type': 'multipart/form-data; boundary=%s' % boundary,
'Accept': 'application/json',
'Accept-Encoding': 'gzip, deflate',
'User-Agent': 'framespot-client/1.0',
}
data = (b'--%s\r\n' % boundary.encode() +
b'Content-Disposition: form-data; name="frame"; filename="%s"\r\n' % filename.encode() +
b'Content-Type: %s\r\n\r\n' % content_type.encode() +
filedata + b'\r\n'
b'--%s--\r\n' % boundary.encode())
try:
request = urllib.request.Request(url, method='POST', headers=headers, data=data)
with urllib.request.urlopen(request, timeout=120) as response:
result_code = response.getcode()
result_url = response.geturl()
result_headers = response.info()
result_type = result_headers.get_content_type()
if result_code != 200:
return None
assert result_url == url and result_type == 'application/json'
# Uncompress
decompressor = None
if result_headers.get('Content-Encoding') == 'zlib':
decompressor = zlib.decompressobj()
elif result_headers.get('Content-Encoding') == 'gzip':
decompressor = zlib.decompressobj(zlib.MAX_WBITS|16)
elif result_headers.get('Content-Encoding') == 'deflate':
decompressor = zlib.decompressobj(-zlib.MAX_WBITS)
elif result_headers.get('Content-Encoding'):
decompressor = zlib.decompressobj(zlib.MAX_WBITS|32) # automatic header detection
result_data = b''
while True:
buf = response.read(0x1000)
if not buf:
break
result_data += decompressor.decompress(buf) if decompressor else buf
assert len(result_data) < 0x1000000
if decompressor:
result_data += decompressor.flush()
return json.loads(result_data)
except (urllib.error.HTTPError, urllib.error.URLError):
traceback.print_exc(file=sys.stderr)
return None
# scenecut @ 500 fps
def scenecut(filepath, scene_min=None, scene_max=None, seek=None, duration=None):
kp_detector = cv2.FastFeatureDetector_create()
kp_descriptor = cv2.ORB_create()
bf_hamming = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
pyramid_down = 240
truncate_keypoints = 256
min_kpmatched = 8
bits_kpmatched = 32
min_keypoints = 256
# Brief is faster than ORB - but not rotation invariant
if hasattr(cv2, 'xfeatures2d'):
kp_descriptor = cv2.xfeatures2d.BriefDescriptorExtractor_create(bytes=16)
bits_kpmatched = 16
cap = cv2.VideoCapture(filepath)
if seek is not None:
cap.set(cv2.CAP_PROP_POS_MSEC, seek)
best_frame = None
best_offset = None
best_quality = 0.0
des_prev = None
scene_start = (0 if seek is None else seek)
stop = scene_start + duration if duration else None
while True:
ret, frame = cap.read()
cap_time = cap.get(cv2.CAP_PROP_POS_MSEC)
if not ret or (best_frame is not None and stop is not None and cap_time >= stop):
if best_frame is not None:
yield (best_frame, best_offset)
break
# Keypoints on simplified frame
grayframe = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
width = math.ceil(math.sqrt(pyramid_down*pyramid_down * grayframe.shape[1] / grayframe.shape[0]))
height = math.ceil(math.sqrt(pyramid_down*pyramid_down * grayframe.shape[0] / grayframe.shape[1]))
smallframe = cv2.resize(grayframe, (width, height), interpolation=cv2.INTER_AREA)
kpf = kp_detector.detect(smallframe, None)
kpf = list(kpf) # opencv 4.5.4 replaced list-results with tuples
if len(kpf) < min_keypoints:
continue
kpf.sort(key=lambda kp: kp.response, reverse=True)
kps, des = kp_descriptor.compute(smallframe, kpf[:truncate_keypoints])
# Best frame within scene
if des_prev is not None and des is not None:
# Scene cut?
newscene = False
if scene_max is not None and scene_start + scene_max < cap_time:
newscene = True
elif scene_min is None or scene_start + scene_min < cap_time:
matches = bf_hamming.match(des_prev, des)
matched = list(filter(lambda match: match.distance <= bits_kpmatched, matches))
if len(matched) < min_kpmatched:
newscene = True
# Yield frame
if newscene and best_frame is not None:
yield (best_frame, best_offset)
scene_start = cap_time
best_frame = None
best_offset = None
best_quality = 0.0
# Better frame?
else:
quality = sum(kp.response for kp in kps)
if best_quality < quality:
best_frame = frame
best_offset = cap_time
best_quality = quality
des_prev = des
cap.release()
# main
if __name__ == '__main__':
# Params
opts, args = getopt.getopt(sys.argv[1:],'s:d:v',['seek=','duration=','min-scene=','max-scene=','verbose'])
if len(args) != 1:
print('Usage: python3 . --seek=#sec --duration=#sec /path/to/file', file=sys.stderr)
sys.exit(os.EX_USAGE)
filepath = args[0]
if not os.path.exists(filepath):
print('File not found:', filepath, file=sys.stderr)
sys.exit(os.EX_USAGE)
scene_min, scene_max = 5000, 60000 # scene: [5s..60s]
seek, duration = None, None
verbose = False
for o, a in opts:
if o in ('-s', '--seek'):
seek = float(a) * 1000
elif o in ('-d', '--duration'):
duration = float(a) * 1000
elif o in ('min-scene'):
scene_min = float(a) * 1000
elif o in ('max-scene'):
scene_max = float(a) * 1000
elif o in ('-v','--verbose'):
verbose = True
if verbose:
print('Inference:', filepath, 'seek:',seek, 'duration:',duration, 'scene:['+str(scene_min)+':'+str(scene_max)+']', file=sys.stderr)
# Detect video (container only, could also match an audio)
is_video = False
with open(filepath, 'rb') as fp:
buf = bytearray(fp.read(8192))
# video/mp4 (.mp4) + video/quicktime (.mov) + video/x-m4v (.m4v)
if len(buf) > 8 and buf[4] == 0x66 and buf[5] == 0x74 and buf[6] == 0x79 and buf[7] == 0x70:
ftyp_len = int.from_bytes(buf[0:4], byteorder='big')
if len(buf) > 10 and buf[0] == 0x0 and buf[1] == 0x0 and buf[2] == 0x0 and buf[3] == 0x1C and buf[8] == 0x4D and buf[9] == 0x34 and buf[10] == 0x56:
is_video = True
elif len(buf) >= ftyp_len:
major_brand = buf[8:12].decode(errors='ignore')
compatible_brands = [buf[i:i+4].decode(errors='ignore') for i in range(16, ftyp_len, 4)]
if major_brand in ['mp41','mp42','isom','qt ']:
is_video = True
elif 'mp41' in compatible_brands or 'mp42' in compatible_brands or 'isom' in compatible_brands:
is_video = True
# video/webm (.webm) + video/x-matroska (.mkv)
elif buf.startswith(b'\x1A\x45\xDF\xA3') and (buf.find(b'\x42\x82\x84webm') > -1 or buf.find(b'\x42\x82\x88matroska') > -1):
is_video = True
# video/mpeg (.mpg)
elif len(buf) > 3 and buf[0] == 0x0 and buf[1] == 0x0 and buf[2] == 0x1 and buf[3] >= 0xb0 and buf[3] <= 0xbf:
is_video = True
# video/mp2t (.ts)
#elif len(buf) > 12 and buf[0] == 0x47 and ...:
# is_video = True
# video/x-msvideo (.avi)
elif len(buf) > 11 and buf[0] == 0x52 and buf[1] == 0x49 and buf[2] == 0x46 and buf[3] == 0x46 and buf[8] == 0x41 and buf[9] == 0x56 and buf[10] == 0x49 and buf[11] == 0x20:
is_video = True
# video/x-ms-wmv (.wmv)
elif len(buf) > 9 and buf[0] == 0x30 and buf[1] == 0x26 and buf[2] == 0xB2 and buf[3] == 0x75 and buf[4] == 0x8E and buf[5] == 0x66 and buf[6] == 0xCF and buf[7] == 0x11 and buf[8] == 0xA6 and buf[9] == 0xD9:
is_video = True
# video/3gpp (.3gp)
elif len(buf) > 7 and buf[0] == 0x66 and buf[1] == 0x74 and buf[2] == 0x79 and buf[3] == 0x70 and buf[4] == 0x33 and buf[5] == 0x67 and buf[6] == 0x70:
is_video = True
# video/x-flv (.flv)
elif len(buf) > 3 and buf[0] == 0x46 and buf[1] == 0x4C and buf[2] == 0x56 and buf[3] == 0x01:
is_video = True
# image/gif (.gif)
elif len(buf) > 2 and buf[0] == 0x47 and buf[1] == 0x49 and buf[2] == 0x46:
if b'\x21\xFF\x0B\x4E\x45\x54\x53\x43\x41\x50\x45\x32\x2E\x30' in buf: # animated
is_video = True
# image/webp (.webp)
elif len(buf) > 16 and buf[0] == 0x52 and buf[1] == 0x49 and buf[2] == 0x46 and buf[3] == 0x46 and buf[8] == 0x57 and buf[9] == 0x45 and buf[10] == 0x42 and buf[11] == 0x50 and buf[12] == 0x56 and buf[13] == 0x50:
if buf[12:16] == b'VP8X' and buf[16] & 2 != 0: # animated
is_video = True
# Frame generator
if is_video:
frame_generator = scenecut(filepath, scene_min=scene_min, scene_max=scene_max, seek=seek, duration=duration)
else:
frame = cv2.imread( filepath, cv2.IMREAD_UNCHANGED )
if frame is None or frame.dtype != numpy.uint8 or len(frame.shape) == 2 or frame.shape[2] != 3:
try:
import PIL.Image
with PIL.Image.open(filepath) as img:
if img.mode != 'RGB':
white_background = PIL.Image.new('RGBA', img.size, (255,255,255))
img = PIL.Image.alpha_composite(white_background, img.convert('RGBA')).convert('RGB')
frame = numpy.array(img, dtype=numpy.uint8)[...,::-1].copy() # RGB->BGR
except ImportError:
frame = None
except PIL.UnidentifiedImageError:
frame = None
frame_generator = [(frame, None)] if frame is not None else []
# Lookup frames
got_frames = False
for frame, offset, lookup, copyrights in inference(frame_generator):
got_frames = True
if verbose:
label = '{:02d}:{:02d}:{:02d}'.format(int(offset/3600000) % 24,int(offset/60000) % 60,int(offset/1000) % 60) if type(offset) in [float,int] else offset
print(label, 'response:', json.dumps(lookup), file=sys.stderr)
frameoffset = frame
cv2.putText(frameoffset,label, (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
cv2.imshow('frame',frameoffset)
if cv2.waitKey(1) & 0xFF == ord('q'):
quit()
if copyrights:
print(json.dumps(copyrights, indent=2))
break
if not got_frames:
print('Did not yield frames:', filepath, file=sys.stderr)
sys.exit(os.EX_NOINPUT)
if verbose:
cv2.waitKey()