forked from andreas128/RePaint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
442 lines (360 loc) · 14.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Copyright (c) 2022 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This repository was forked from https://github.com/openai/guided-diffusion, which is under the MIT license
import multiprocessing as mp
from pathlib import Path
import numpy as np
"""
Like image_sample.py, but use a noisy image classifier to guide the sampling
process towards more realistic images.
"""
import os
import argparse
import torch as th
import torch.nn.functional as F
import time
import conf_mgt
from utils import yamlread
from guided_diffusion import dist_util
from time import perf_counter
import cv2
import lpips
import pandas as pd
# Workaround
try:
import ctypes
libgcc_s = ctypes.CDLL("libgcc_s.so.1")
except:
pass
from guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
classifier_defaults,
create_model_and_diffusion,
create_classifier,
select_args,
) # noqa: E402
def toU8(sample):
if sample is None:
return sample
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
sample = sample.detach().cpu().numpy()
return sample
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
def build_conf(
exp, conf_name, total_it=20, n=1, jump_length=None, jump_n_sample=None, seed=0, parallel=True,
save_model=None, reload=False, cond_y=933 # hamburger
):
conf_path = f"experiments/{exp}/confs/{conf_name}.yml"
conf_arg = conf_mgt.conf_base.Default_Conf()
conf_arg.update(yamlread(conf_path))
conf_arg['callback'] = parallel
conf_arg["cond_y"] = cond_y
output_folder = f"experiments/{exp}/outputs/{conf_name}/its_{total_it}_jl_{jump_length}_js_{jump_n_sample}"
eval_name = conf_arg.get_default_eval_name()
conf_arg["data"]["eval"][eval_name][
"gt_path"
] = f"experiments/{exp}/gts/{conf_name}/img"
conf_arg["data"]["eval"][eval_name][
"mask_path"
] = f"experiments/{exp}/gts/{conf_name}/mask"
conf_arg["data"]["eval"][eval_name]["paths"]["srs"] = f"{output_folder}/inpainted"
conf_arg["data"]["eval"][eval_name]["paths"]["lrs"] = f"{output_folder}/gt_masked"
conf_arg["data"]["eval"][eval_name]["paths"]["gts"] = f"{output_folder}/gt"
conf_arg["data"]["eval"][eval_name]["paths"][
"gt_keep_masks"
] = f"{output_folder}/gt_keep_mask"
conf_arg["log_dir"] = f"{output_folder}/logs/"
conf_arg["data"]["eval"][eval_name]["max_len"] = n
conf_arg["timestep_respacing"] = str(total_it)
conf_arg["schedule_jump_params"]["t_T"] = total_it
if jump_length is not None:
conf_arg["schedule_jump_params"]["jump_length"] = jump_length
if jump_n_sample is not None:
conf_arg["schedule_jump_params"]["jump_n_sample"] = jump_n_sample
conf_arg["seed"] = seed
conf_arg["reload"] = reload
if save_model is not None:
if 'model_path' not in save_model:
save_model['model_path'] = conf_arg["log_dir"] + 'save_jn.pkl'
conf_arg['save_model'] = save_model["model_path"]
conf_arg['save_idx'] = save_model["save_idx"]
conf_arg['stop_it'] = save_model["stop_it"]
return conf_arg
def main(conf):
fig = plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
im = plt.imshow(
np.random.rand(10, 10), animated=True
) # Initialize with a random image
plt.axis("off")
plt.title("Sampled image")
plt.subplot(1, 2, 2)
gr = plt.plot(np.random.rand(10), marker="x")
scatter = plt.scatter(np.random.rand(10), np.random.rand(10), color='red', zorder=10)
plt.xlabel("Repaint step")
plt.ylabel("Diffusion time")
plt.title("Resampling strategy")
queue = mp.Queue()
times = []
def callback(args):
while not queue.empty():
data = queue.get_nowait()
if isinstance(data, tuple):
if isinstance(data[0], str):
if data[0] == "times":
times.extend(data[1])
data_arr = np.array(data[1])
x = np.arange(data_arr.shape[0])
gr[0].set_ydata(data_arr)
gr[0].set_xdata(x)
gr[0].axes.set_xlim(0, data_arr.shape[0])
gr[0].axes.set_ylim(np.min(data_arr), np.max(data_arr))
np.savetxt(conf["log_dir"] + "/times.txt", np.c_[x, data_arr], fmt="%f")
else:
plt.suptitle(data[1])
if data[1] == "Sampling complete":
ani.event_source.stop()
print("Done")
else:
idx = data[0]
data = data[1]
data = (data - np.min(data)) / (np.max(data) - np.min(data))
if times is not None:
scatter.set_offsets(np.c_[idx, times[idx]])
im.set_array(data) # Update the image
return im, gr, scatter
if conf['callback']:
ani = animation.FuncAnimation(
fig, callback, frames=range(1000), interval=1000, blit=False
)
p = mp.Process(target=sample_now, args=(conf, queue))
p.start()
plt.show()
return p, ani
else:
print("Starting process...")
p = mp.Process(target=sample_now, args=(conf, queue))
p.start()
return p, queue
import sys
def sample_now(conf, callback_code):
os.makedirs(conf["log_dir"], exist_ok=True)
sys.stdout = open(conf["log_dir"] + str(os.getpid()) + ".out", "w")
sys.stderr = open(conf["log_dir"] + str(os.getpid()) + ".err", "w")
th.random.manual_seed(conf["seed"])
np.random.seed(conf["seed"])
assert conf["schedule_jump_params"]["t_T"] == int(conf["timestep_respacing"]), (
conf["schedule_jump_params"]["t_T"],
conf["timestep_respacing"],
)
print("Start", conf["name"])
callback_code.put(("msg", f"Start {conf['name']}..."))
device = dist_util.dev(conf.get("device"))
print("device:", device)
conf_y = conf.get("cond_y")
print("cond_y:", conf_y)
callback_code.put(("msg", f"device: {device}..."))
print("loading model...")
loss_fn_alex = lpips.LPIPS(net="alex") # best forward scores
loss_fn_vgg = lpips.LPIPS(net="vgg") # best forward scores
callback_code.put(("msg", f"loading model..."))
model, diffusion = create_model_and_diffusion(
**select_args(conf, model_and_diffusion_defaults().keys()), conf=conf
)
print("loading state")
callback_code.put(("msg", f"loading state..."))
model.load_state_dict(
dist_util.load_state_dict(
os.path.expanduser(conf.model_path), map_location="cpu"
)
)
model.to(device)
if conf.use_fp16:
model.convert_to_fp16()
model.eval()
show_progress = conf.show_progress
if conf.classifier_scale > 0 and conf.classifier_path:
print("loading classifier...")
callback_code.put(("msg", f"loading classifier..."))
classifier = create_classifier(
**select_args(conf, classifier_defaults().keys())
)
print(select_args(conf, classifier_defaults().keys()))
print(conf.classifier_path)
classifier.load_state_dict(
dist_util.load_state_dict(
os.path.expanduser(conf.classifier_path), map_location="cpu"
)
)
classifier.to(device)
if conf.classifier_use_fp16:
classifier.convert_to_fp16()
classifier.eval()
def cond_fn(x, t, y=None, gt=None, **kwargs):
assert y is not None
with th.enable_grad():
x_in = x.detach().requires_grad_(True)
logits = classifier(x_in, t)
log_probs = F.log_softmax(logits, dim=-1)
selected = log_probs[range(len(logits)), y.view(-1)]
return th.autograd.grad(selected.sum(), x_in)[0] * conf.classifier_scale
else:
cond_fn = None
def model_fn(x, t, y=None, gt=None, **kwargs):
assert y is not None
return model(x, t, y if conf.class_cond else None, gt=gt)
print("sampling...")
all_images = []
dset = "eval"
eval_name = conf.get_default_eval_name()
print("eval_name:", eval_name)
print("loading dataloader...")
callback_code.put(("msg", f"loading dataloader..."))
dl = conf.get_dataloader(dset=dset, dsName=eval_name)
counter = 0
count_max = conf["data"]["eval"][eval_name]["max_len"]
times = []
for batch in iter(dl):
counter += 1
for k in batch.keys():
if isinstance(batch[k], th.Tensor):
batch[k] = batch[k].to(device)
model_kwargs = {}
model_kwargs["gt"] = batch["GT"]
gt_keep_mask = batch.get("gt_keep_mask")
if gt_keep_mask is not None:
model_kwargs["gt_keep_mask"] = gt_keep_mask
batch_size = model_kwargs["gt"].shape[0]
# print('cond_y', conf.conf_y)
# if 'cond_y' in conf:
# conf.cond_y = conf['cond_y']
classes = th.ones(batch_size, dtype=th.long, device=device) * conf_y
model_kwargs["y"] = classes
print(model_kwargs["y"])
# if conf_y is not None:
# classes = th.ones(batch_size, dtype=th.long, device=device)
# model_kwargs["y"] = classes * conf_y
# else:
# classes = th.randint(
# low=0, high=NUM_CLASSES, size=(batch_size,), device=device
# )
# model_kwargs["y"] = classes
try:
import json
with open("inet_labels.json", "r") as f:
class_names = json.load(f)
print(classes)
print("classes:", classes, class_names[str(classes[0].item())])
except:
print("Failed to load class names")
sample_fn = (
diffusion.p_sample_loop if not conf.use_ddim else diffusion.ddim_sample_loop
)
callback_code.put(("msg", f"Start sampling... {counter}/{count_max}"))
time_begin = perf_counter()
result = sample_fn(
model_fn,
(batch_size, 3, conf.image_size, conf.image_size),
clip_denoised=conf.clip_denoised,
model_kwargs=model_kwargs,
cond_fn=cond_fn,
device=device,
progress=show_progress,
return_all=True,
conf=conf,
callback=callback_code,
)
time_end = perf_counter()
times.append(time_end - time_begin)
srs = toU8(result["sample"])
gts = toU8(result["gt"])
lrs = toU8(
result.get("gt") * model_kwargs.get("gt_keep_mask")
+ (-1)
* th.ones_like(result.get("gt"))
* (1 - model_kwargs.get("gt_keep_mask"))
)
gt_keep_masks = toU8((model_kwargs.get("gt_keep_mask") * 2 - 1))
conf.eval_imswrite(
srs=srs,
gts=gts,
lrs=lrs,
gt_keep_masks=gt_keep_masks,
img_names=batch["GT_name"],
dset=dset,
name=eval_name,
verify_same=False,
)
result_dir = str(Path(conf["log_dir"]).parent) + "/results/"
os.makedirs(result_dir, exist_ok=True)
# lpips score
losses = []
losses_vgg = []
ssims = []
mses = []
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import mean_squared_error
for img in sorted(os.listdir(conf["data"]["eval"][eval_name]["gt_path"]))[:count_max]:
file_img0 = os.path.join(conf["data"]["eval"][eval_name]["paths"]["gts"], img)
file_img1 = os.path.join(conf["data"]["eval"][eval_name]["paths"]["srs"], img)
img0 = cv2.imread(file_img0, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.0
img1 = cv2.imread(file_img1, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255.0
print("LPIPS for", img)
# if img0.shape[0] > 64:
# # downsample to 64x64
# img0 = cv2.resize(img0 * 255, (64, 64), interpolation=cv2.INTER_AREA)
# cv2.imwrite(file_img0 + ".n.png", img0)
# img1 = cv2.resize(img1 * 255, (64, 64), interpolation=cv2.INTER_AREA)
# cv2.imwrite(file_img1 + ".dn.png", img1)
# print("resizing to 64x64")
img0t = th.from_numpy(img0).permute(2, 0, 1).unsqueeze(0).float()
img1t = th.from_numpy(img1).permute(2, 0, 1).unsqueeze(0).float()
d = loss_fn_alex(img0t, img1t)
losses.append(d.item())
d2 = loss_fn_vgg(img0t, img1t)
losses_vgg.append(d2.item())
# ssim
print("SSIM for", img0.shape, img1.shape)
ssimdim1 = ssim(img0[:, :, 0], img1[:, :, 0], data_range=1.0)
ssimdim2 = ssim(img0[:, :, 1], img1[:, :, 1], data_range=1.0)
ssimdim3 = ssim(img0[:, :, 2], img1[:, :, 2], data_range=1.0)
ssims.append((ssimdim1 + ssimdim2 + ssimdim3) / 3.0)
mse = mean_squared_error(img0, img1)
mses.append(mse)
r_jump_length = [conf["schedule_jump_params"]["jump_length"]] * len(losses)
r_jump_n_sample = [conf["schedule_jump_params"]["jump_n_sample"]] * len(losses)
r_total_it = [conf["schedule_jump_params"]["t_T"]] * len(losses)
r_seed = [conf["seed"]] * len(losses)
r_model = [os.path.basename(conf["model_path"])] * len(losses)
results = pd.DataFrame({"lpips_alex": losses, "ssim": ssims, "mse": mses,
"lpips_vgg": losses_vgg,
"time": times,
"model_name": r_model, "jump_length": r_jump_length, "jump_n_sample": r_jump_n_sample, "total_it": r_total_it, "seed": r_seed})
results = results.round(4)
results.to_csv(result_dir + conf["name"] + ".csv")
print("sampling complete")
callback_code.put(("msg", f"Sampling complete"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--conf_path", type=str, required=False, default=None)
args = vars(parser.parse_args())
conf_arg = conf_mgt.conf_base.Default_Conf()
conf_arg.update(yamlread(args.get("conf_path")))
main(conf_arg)