-
Notifications
You must be signed in to change notification settings - Fork 373
/
Copy pathtest_correctness.py
387 lines (342 loc) · 13.1 KB
/
test_correctness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import functools
import logging
import os
import unittest
import cv2
import numpy as np
import torch
from aitemplate.compiler import compile_model
from aitemplate.frontend import Tensor
from aitemplate.testing import detect_target
from detectron2.config import CfgNode
from detectron2.engine import DefaultPredictor
try:
from libfb.py.asyncio.await_utils import await_sync
from manifold.clients.python import ManifoldClient
except ImportError:
ManifoldClient = None
import requests
from detectron2.model_zoo import get_checkpoint_url
from parameterized import parameterized
from PIL import Image
from .configs.config import get_cfg_defaults
from .modeling.meta_arch import GeneralizedRCNN
from .tools.convert_pt2ait import detectron2_export
logger = logging.getLogger(__name__)
def mark_output(y):
if type(y) is not tuple:
y = (y,)
for i in range(len(y)):
y[i]._attrs["is_output"] = True
y[i]._attrs["name"] = "output_%d" % (i)
y_shape = [d._attrs["values"][0] for d in y[i]._attrs["shape"]]
print("output_{} shape: {}".format(i, y_shape))
def extract_params_meta(ait_model):
ret = []
for name, p in ait_model.named_parameters():
name = name.replace(".", "_")
shape = [x._attrs["values"][0] for x in p.tensor()._attrs["shape"]]
ret.append([name, shape])
return ret
def get_output_shape(oldh: int, oldw: int, short_edge_length: int, max_size: int):
"""
Compute the output size given input size and target short edge length.
"""
h, w = oldh, oldw
size = short_edge_length * 1.0
scale = size / min(h, w)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
if max(newh, neww) > max_size:
scale = max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return (newh, neww)
def apply_transform(cfg, img):
"""
Resize the image while keeping the aspect ratio unchanged.
It attempts to scale the shorter edge to the given `short_edge_length`,
as long as the longer edge does not exceed `max_size`.
If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
"""
h, w = img.shape[:2]
new_h, new_w = get_output_shape(
h, w, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST
)
if len(img.shape) > 2 and img.shape[2] == 1:
pil_image = Image.fromarray(img[:, :, 0], mode="L")
else:
pil_image = Image.fromarray(img)
pil_image = pil_image.resize((new_w, new_h), Image.BILINEAR)
ret = np.asarray(pil_image)
if len(img.shape) > 2 and img.shape[2] == 1:
ret = np.expand_dims(ret, -1)
return ret
def preprocess(cfg, ori_img, pad_value: float = 0.0, dtype="float16"):
"""
Image preprocess: resize the image (see `apply_transform`), normalize the pixels,
and add padding.
"""
# HH, WW = self.im_shape
ori_shape = ori_img.shape
if ori_shape[0] > ori_shape[1]:
img = np.rot90(ori_img, k=1)
else:
img = ori_img
inputs = apply_transform(cfg, img)
resize_scale = img.shape[0] / inputs.shape[0]
pixel_mean = np.array(cfg.MODEL.PIXEL_MEAN).reshape(1, 1, -1)
pixel_std = np.array(cfg.MODEL.PIXEL_STD).reshape(1, 1, -1)
inputs = (inputs - pixel_mean) / pixel_std
padding_size = (
(0, cfg.INPUT.MIN_SIZE_TEST - inputs.shape[0]),
(0, cfg.INPUT.MAX_SIZE_TEST - inputs.shape[1]),
(0, 0),
)
inputs = np.pad(inputs, padding_size, constant_values=pad_value)
inputs = inputs[np.newaxis, :]
return inputs.astype(dtype), ori_img, ori_shape, resize_scale
def apply_bbox(bbox, im_w, im_h):
if im_h > im_w:
x0 = bbox[:, 0][..., np.newaxis]
y0 = bbox[:, 1][..., np.newaxis]
x1 = bbox[:, 2][..., np.newaxis]
y1 = bbox[:, 3][..., np.newaxis]
bbox = np.hstack((im_w - y1, x0, im_w - y0, x1))
return bbox
def postprocess_ait_results(
ret,
mask_on,
batch_size,
score_thresh,
images,
image_list,
image_shapes,
image_scales,
):
batched_boxes, batched_scores, batched_classes = ret[1:4]
if mask_on:
batched_masks = ret[-1]
results = {}
for i in range(batch_size):
boxes, scores, classes = (
batched_boxes[i, :],
batched_scores[i, :],
batched_classes[i, :],
)
filter_inds = (scores > score_thresh).nonzero().squeeze()
scores = scores[filter_inds]
boxes = boxes[filter_inds, :] * image_scales[i]
boxes = apply_bbox(boxes, image_shapes[i][1], image_shapes[i][0])
classes = classes[filter_inds]
results[image_list[i]] = {
"boxes": boxes,
"scores": scores,
"classes": classes,
"image_height": image_shapes[i][0],
"image_width": image_shapes[i][1],
"num_instances": boxes.shape[0],
"image": images[i],
}
if mask_on:
mask_pred = batched_masks[i, filter_inds, :, :]
im_height, im_width = image_shapes[i][:2]
masks = []
for pred_box, mask in zip(
boxes,
mask_pred,
):
mask = mask.cpu().numpy().astype(np.float32)
if im_height > im_width:
mask = np.rot90(mask, k=-1)
box = pred_box.cpu().numpy().astype("int")
det_width = box[2] - box[0]
det_height = box[3] - box[1]
small_mask = Image.fromarray(mask)
mask = small_mask.resize(
(det_width, det_height), resample=Image.BILINEAR
)
mask = np.array(mask, copy=False)
MASK_THRESHOLD = 0.5
mask = np.array(mask > MASK_THRESHOLD, dtype=np.uint8)
padded_mask = np.zeros((im_height, im_width), dtype=np.uint8)
x_0 = max(box[0], 0)
x_1 = min(box[2], im_width)
y_0 = max(box[1], 0)
y_1 = min(box[3], im_height)
padded_mask[y_0:y_1, x_0:x_1] = mask[
(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])
]
masks.append(padded_mask)
results[image_list[i]]["masks"] = torch.tensor(masks)
return results
class Detectron2Verification(unittest.TestCase):
@parameterized.expand(
["faster_rcnn_R_50", "faster_rcnn_R_101", "mask_rcnn_R_50", "mask_rcnn_R_101"]
)
def test_detectron2(self, config):
cfg = get_cfg_defaults()
cfg.merge_from_file(
os.path.join(os.path.dirname(__file__), "configs", f"{config}_FPN.yaml")
)
cfg.SOLVER.IMS_PER_BATCH = 1
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
cfg.freeze()
ait_dtype = "float16"
torch_dtype = torch.float16
model = GeneralizedRCNN(cfg)
model.name_parameter_tensor()
x = Tensor(
shape=[
cfg.SOLVER.IMS_PER_BATCH,
cfg.INPUT.MIN_SIZE_TEST,
cfg.INPUT.MAX_SIZE_TEST,
3,
],
dtype=ait_dtype,
name="input_0",
is_input=True,
)
y = model(x)
mark_output(y)
checkpoint_path = f"/tmp/detectron2/{config}_FPN_3x.pkl"
sample_input_filename = "000000001268.jpg"
sample_input_path = f"/tmp/detectron2/{sample_input_filename}"
torch_cfg = CfgNode(cfg)
torch_cfg.MODEL.WEIGHTS = checkpoint_path
if not os.path.exists(checkpoint_path):
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
if ManifoldClient is not None:
with ManifoldClient.get_client("glow_test_data") as client:
await_sync(
client.get(
f"tree/aitemplate/detectron2/pickles/{config}_FPN_3x.pkl",
checkpoint_path,
)
)
else:
torch_cfg.MODEL.WEIGHTS = get_checkpoint_url(
f"COCO-{'InstanceSegmentation' if 'mask' in config else 'Detection'}/{config}_FPN_3x.yaml"
)
torch_predictor = DefaultPredictor(torch_cfg)
if not os.path.exists(sample_input_path):
if ManifoldClient is not None:
with ManifoldClient.get_client("aitemplate") as client:
await_sync(
client.get(
f"tree/detectron2/datasets/coco/val2017/{sample_input_filename}",
sample_input_path,
)
)
else:
img_url = (
f"http://images.cocodataset.org/val2017/{sample_input_filename}"
)
img_data = requests.get(img_url).content
with open(sample_input_path, "wb") as f:
f.write(img_data)
sample_img = cv2.imread(sample_input_path)
sample_input, original_image, shape, scale = preprocess(
cfg, sample_img, dtype=ait_dtype
)
x_ait = torch.tensor(sample_input).cuda()
with torch.no_grad():
ait_params = detectron2_export("").export_model(
{
k: v.cpu().numpy()
for k, v in torch_predictor.model.state_dict().items()
},
extract_params_meta(model),
)
pt_instance = torch_predictor(sample_img)["instances"]
ait_module = compile_model(y, detect_target(), "./tmp", cfg.MODEL.NAME)
for name, param in ait_params.items():
ait_module.set_constant_with_tensor(
name, param.contiguous().to(dtype=torch_dtype).cuda()
)
model.set_anchors(ait_module)
topk = cfg.POSTPROCESS.TOPK
BS = cfg.SOLVER.IMS_PER_BATCH
outputs = [
torch.empty([BS, 1], dtype=torch.int64).cuda(),
torch.empty([BS, topk, 4], dtype=torch_dtype).cuda(),
torch.empty([BS, topk], dtype=torch_dtype).cuda(),
torch.empty([BS, topk], dtype=torch.int64).cuda(),
]
if cfg.MODEL.MASK_ON:
mask_size = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION * 2
outputs.append(
torch.empty([BS, topk, mask_size, mask_size], dtype=torch_dtype).cuda()
)
ait_module.run_with_tensors([x_ait], outputs)
ait_results = postprocess_ait_results(
outputs,
cfg.MODEL.MASK_ON,
BS,
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
[original_image],
[sample_input_path],
[shape],
[scale],
)
result = ait_results[sample_input_path]
compare_floats = functools.partial(
torch.testing.assert_close, atol=1e-1, rtol=1e-1
)
compare_ints = functools.partial(torch.testing.assert_close, atol=0, rtol=0)
compare_ints(len(pt_instance), result["num_instances"])
# Boxes precision is tricky.
# Practically, these are pixel values, so any difference around 1e0 can be disregarded
compare_boxes_floats = functools.partial(
torch.testing.assert_close, atol=5e-0, rtol=1e-1
)
# Keep in mind that we are comparing sets here,
# not lists because all items are sorted by score and
# a small difference in score can result in a wrong items order.
# We do our best to estabilish 1:1 mapping for comparison
pt_boxes = pt_instance.pred_boxes.tensor.to(dtype=result["boxes"].dtype).sort(
dim=0
)
ait_boxes = result["boxes"].sort(dim=0)
compare_boxes_floats(
ait_boxes,
pt_boxes,
)
compare_floats(
pt_instance.scores.to(dtype=result["scores"].dtype),
result["scores"],
)
# also comparing sets
compare_ints(
pt_instance.pred_classes.sort().values, result["classes"].sort().values
)
# homebrew similarity match between boolean arrays
if cfg.MODEL.MASK_ON:
pt_masks = pt_instance.pred_masks.to(
dtype=result["masks"].dtype, device="cpu"
)
ait_masks = result["masks"]
self.assertLess(
(pt_masks != ait_masks).sum() / (pt_masks == ait_masks).sum(), 1e-2
)
if __name__ == "__main__":
torch.cuda.manual_seed(1337)
unittest.main()