-
Notifications
You must be signed in to change notification settings - Fork 373
/
Copy pathbenchmark_pt.py
51 lines (44 loc) · 1.74 KB
/
benchmark_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import click
import timm
import torch
from aitemplate.testing.benchmark_pt import benchmark_torch_function
def benchmark(model, batch_size):
with torch.inference_mode():
input_shape = (batch_size, 3, 224, 224)
input_data = torch.randn(input_shape).cuda().half()
# warm up
benchmark_torch_function(100, model, input_data)
# benchmark
t = benchmark_torch_function(100, model, input_data)
print("batch_size: {}, time: {}".format(batch_size, t))
dev_flag = os.environ.get("HIP_VISIBLE_DEVICES", "-1")
dev_flag = dev_flag.replace(",", "_")
with open(f"resnet50_pt_benchmark_dev_{dev_flag}.txt", "a") as f:
f.write("batch_size: {}, latency: {}\n".format(batch_size, t))
@click.command()
@click.option("--batch-size", default=0, type=int)
def main(batch_size):
model = timm.create_model("resnet50", pretrained=False).cuda().half()
model.eval()
if batch_size == 0:
for batch_size in [1, 2, 4, 8, 16, 32, 64, 128, 256]:
benchmark(model, batch_size)
else:
benchmark(model, batch_size)
if __name__ == "__main__":
main()