-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathtrain_voc12.py
252 lines (211 loc) · 9.96 KB
/
train_voc12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""Training script for the DeepLab-ResNet network on the PASCAL VOC dataset
for semantic image segmentation.
This script trains the model using augmented PASCAL VOC,
which contains approximately 10000 images for training and 1500 images for
validation.
"""
import os
import sys
import argparse
import numpy as np
import tensorflow as tf
import time
from config import *
from datetime import datetime
from libs.datasets.dataset_factory import read_data
from libs.datasets.VOC12 import decode_labels, inv_preprocess, prepare_label
from libs.nets import deeplabv3
slim = tf.contrib.slim
streaming_mean_iou = tf.contrib.metrics.streaming_mean_iou
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_dir):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
if args.ckpt == 0:
if args.imagenet is not None:
ckpt_path = os.path.join(args.imagenet, 'resnet_v1_{}.ckpt'.format(args.num_layers).format(args.num_layers))
else:
ckpt = tf.train.get_checkpoint_state(ckpt_dir)
ckpt_path = ckpt.model_checkpoint_path
else:
ckpt_path = ckpt_dir+'/model.ckpt-%i' % args.ckpt
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def main():
"""Create the model and start the training."""
h = args.input_size
w = args.input_size
input_size = (h, w)
tf.set_random_seed(args.random_seed)
# Create queue coordinator.
coord = tf.train.Coordinator()
image_batch, label_batch = read_data(is_training=True, split_name='train')
# Create network.
net, end_points = deeplabv3(image_batch,
num_classes=args.num_classes,
depth=args.num_layers,
is_training=True,
)
# For a small batch size, it is better to keep
# the statistics of the BN layers (running means and variances)
# frozen, and to not update the values provided by the pre-trained model.
# If is_training=True, the statistics will be updated during the training.
# Note that is_training=False still updates BN parameters gamma (scale)
# and beta (offset)
# if they are presented in var_list of the optimizer definition.
# Predictions.
raw_output = end_points['resnet_v1_{}/logits'.format(args.num_layers)]
# Which variables to load. Running means and variances are not trainable,
# thus all_variables() should be restored.
if args.imagenet is not None and args.ckpt == 0:
restore_var = [v for v in tf.global_variables() if
('aspp' not in v.name) and
('img_pool' not in v.name) and
('fusion' not in v.name) and
('block5' not in v.name) and
('block6' not in v.name) and
('block7' not in v.name) and
('logits' not in v.name)]
else:
restore_var = [v for v in tf.global_variables()]
if args.freeze_bn:
all_trainable = [v for v in tf.trainable_variables() if 'beta' not in
v.name and 'gamma' not in v.name]
else:
all_trainable = [v for v in tf.trainable_variables()]
conv_trainable = [v for v in all_trainable]
# Upsample the logits instead of donwsample the ground truth
raw_output_up = tf.image.resize_bilinear(raw_output, [h, w])
# Predictions: ignoring all predictions with labels greater or equal than
# n_classes
label_proc = tf.squeeze(label_batch)
mask = label_proc <= args.num_classes
seg_logits = tf.boolean_mask(raw_output_up, mask)
seg_gt = tf.boolean_mask(label_proc, mask)
seg_gt = tf.cast(seg_gt, tf.int32)
# Pixel-wise softmax loss.
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_logits,
labels=seg_gt)
seg_loss = tf.reduce_mean(loss)
seg_loss_sum = tf.summary.scalar('loss/seg', seg_loss)
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_loss = tf.add_n(reg_losses)
reg_loss_sum = tf.summary.scalar('loss/reg', reg_loss)
tot_loss = seg_loss + reg_loss
tot_loss_sum = tf.summary.scalar('loss/tot', tot_loss)
seg_pred = tf.argmax(seg_logits, axis=1)
train_mean_iou, train_update_mean_iou = streaming_mean_iou(seg_pred,
seg_gt, args.num_classes, name="train_iou")
train_iou_sum = tf.summary.scalar('accuracy/train_mean_iou',
train_mean_iou)
train_initializer = tf.variables_initializer(var_list=tf.get_collection(
tf.GraphKeys.LOCAL_VARIABLES, scope="train_iou"))
# Define loss and optimisation parameters.
base_lr = tf.constant(args.learning_rate)
step_ph = tf.placeholder(dtype=tf.float32, shape=())
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - step_ph / args.num_steps), args.power))
# learning_rate = base_lr
lr_sum = tf.summary.scalar('params/learning_rate', learning_rate)
train_sum_op = tf.summary.merge([seg_loss_sum, reg_loss_sum,
tot_loss_sum, train_iou_sum, lr_sum])
image_batch_val, label_batch_val = read_data(is_training=False, split_name='val')
_, end_points_val = deeplabv3(image_batch_val,
num_classes=args.num_classes,
depth=args.num_layers,
reuse=True,
is_training=False,
)
raw_output_val = end_points_val['resnet_v1_{}/logits'.format(args.num_layers)]
nh, nw = tf.shape(image_batch_val)[1], tf.shape(image_batch_val)[2]
seg_logits_val = tf.image.resize_bilinear(raw_output_val, [nh, nw])
seg_pred_val = tf.argmax(seg_logits_val, axis=3)
seg_pred_val = tf.expand_dims(seg_pred_val, 3)
seg_pred_val = tf.reshape(seg_pred_val, [-1,])
seg_gt_val = tf.cast(label_batch_val, tf.int32)
seg_gt_val = tf.reshape(seg_gt_val, [-1,])
mask_val = seg_gt_val <= args.num_classes - 1
seg_pred_val = tf.boolean_mask(seg_pred_val, mask_val)
seg_gt_val = tf.boolean_mask(seg_gt_val, mask_val)
val_mean_iou, val_update_mean_iou = streaming_mean_iou(seg_pred_val,
seg_gt_val, num_classes=args.num_classes, name="val_iou")
val_iou_sum = tf.summary.scalar('accuracy/val_mean_iou', val_mean_iou)
val_initializer = tf.variables_initializer(var_list=tf.get_collection(
tf.GraphKeys.LOCAL_VARIABLES, scope="val_iou"))
test_sum_op = tf.summary.merge([val_iou_sum])
global_step = tf.train.get_or_create_global_step()
opt = tf.train.MomentumOptimizer(learning_rate, args.momentum)
grads_conv = tf.gradients(tot_loss, conv_trainable)
# train_op = opt.apply_gradients(zip(grads_conv, conv_trainable))
train_op = slim.learning.create_train_op(
tot_loss, opt,
global_step=global_step,
variables_to_train=conv_trainable,
summarize_gradients=True)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Saver for storing checkpoints of the model.
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=20)
# Load variables if the checkpoint is provided.
if args.ckpt > 0 or args.restore_from is not None or args.imagenet is not None:
loader = tf.train.Saver(var_list=restore_var)
load(loader, sess, args.snapshot_dir)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
# tf.get_default_graph().finalize()
summary_writer = tf.summary.FileWriter(args.snapshot_dir,
sess.graph)
# Iterate over training steps.
for step in range(args.ckpt, args.num_steps):
start_time = time.time()
feed_dict = { step_ph : step }
tot_loss_float, seg_loss_float, reg_loss_float, _, lr_float, _,train_summary = sess.run([tot_loss, seg_loss, reg_loss, train_op,
learning_rate, train_update_mean_iou, train_sum_op],
feed_dict=feed_dict)
train_mean_iou_float = sess.run(train_mean_iou)
duration = time.time() - start_time
sys.stdout.write('step {:d}, tot_loss = {:.6f}, seg_loss = {:.6f}, ' \
'reg_loss = {:.6f}, mean_iou = {:.6f}, lr: {:.6f}({:.3f}' \
'sec/step)\n'.format(step, tot_loss_float, seg_loss_float,
reg_loss_float, train_mean_iou_float, lr_float, duration)
)
sys.stdout.flush()
if step % args.save_pred_every == 0 and step > args.ckpt:
sess.run(val_initializer)
for val_step in range(NUM_VAL):
_, test_summary = sess.run([val_update_mean_iou, test_sum_op],
feed_dict=feed_dict)
summary_writer.add_summary(train_summary, step)
summary_writer.add_summary(test_summary, step)
val_mean_iou_float= sess.run(val_mean_iou)
save(saver, sess, args.snapshot_dir, step)
sys.stdout.write('step {:d}, train_mean_iou: {:.6f}, ' \
'val_mean_iou: {:.6f}\n'.format(step, train_mean_iou_float,
val_mean_iou_float))
sys.stdout.flush()
sess.run(train_initializer)
if coord.should_stop():
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()