-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathan_intro_to_rt-errata.html
273 lines (213 loc) · 11.1 KB
/
an_intro_to_rt-errata.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Ray Tracing Resources Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon"/>
<link rel="icon" href="favicon.ico" type="image/x-icon"/>
<link rel="stylesheet" href="rtr4.css" type="text/css"/>
</head>
<body>
<div id="wrapper">
<div id="header">
<div id="rtr3-header-image">
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr bgcolor="#10304B">
<td>
<a href="http://www.realtimerendering.com/blog">
<img src="rtr-header.png" alt="Header image" width="410" height="106"/>
</a>
</td>
</tr>
</table>
</div>
<div id="navigation" class="clearfix">
<ul class="primary">
<li><a href="http://www.realtimerendering.com/blog/" rel="home">Blog</a></li>
<li><a title="Recommended books" href="books.html">Graphics books</a></li>
<li><a title="Object / object intersection page" href="intersections.html">Intersections</a></li>
<li><a title="Sites we like" href="portal.html">Portal</a></li>
<li><a title="Ray Tracing Resources" href="raytracing.html">Ray tracing</a></li>
<li><a title="Main resources page" href="index.html">Resources</a></li>
<li><a title="USD and glTF Resources" href="usd_gltf.html">USD & glTF</a></li>
<li><a title="WebGL/three.js Resources" href="webgl.html">WebGL</a></li>
</ul>
</div>
</div>
<div id="content" class="clearfix">
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td class="pageName">Errata for first printing of "An Introduction to Ray Tracing"</td>
</tr>
<tr>
<td valign="top"><img src="spacer.gif" alt="" height="6" border="0"/><br/>
</tr>
<tr>
<td class="bodyText">
<div class="metadata">
Last changed: April 15, 2019
</div>
<P>
<a href="https://smile.amazon.com/gp/product/0122861604?tag=realtimerenderin"><img src="AmazonImages/50KWx2vL_SL50_.jpg" alt="cover" height="50" align=left border=0></a>
<img src="spacer.gif" alt="" height="55" width="14" align=left border=0>
<a href="http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf"><img src="download_for_free_sm.png" alt="download for free" align=left border=0></a>
<img src="spacer.gif" alt="" height="55" width="12" align=left border=0>
<b><a href="https://smile.amazon.com/gp/product/0122861604?tag=realtimerenderin">An Introduction to Ray Tracing</a></b>, edited by Andrew Glassner, Morgan Kaufmann, 1989.
<P>The first book on ray tracing. Ancient, but most of the information is still valid - math is math, data structures are data structures. Download the <a href="http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf">PDF</a> (recommended) or <a href="http://www.realtimerendering.com/raytracing/Andrew%20S.%20Glassner%20-%20An%20Introduction%20to%20Ray%20tracing%20(The%20Morgan%20Kaufmann%20Series%20in%20Computer%20Graphics)%20(1989).djvu">DJVU</a> version for free.
<P>Find other ray tracing books, free and otherwise, on our <a href="raytracing.html#recent">Ray Tracing Resources Page</a>.
<P>
<b>Errata</b>
<P>
The errata that follows are errors reported since January 20, 2019, when the book was released as a free PDF and DJVU file.
<P>
These errors are corrected in the free <a href="http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf">PDF</a> version of the book (but not the DJVU):
<P>
p. 138-141, sections 2.6 and 2.7, have been rewritten entirely, due to a cascading effect of small algebraic blunders near the start. These are in the PDF as pages 138-rev1 and 139-rev1.
<P>
(superceded by the fix above, but one error in the original text that is fixed in the PDF) p. 139, in the third line of equation (7c), the "T" should be "N" (since going from the second to third line is substituting in the relationship T = \alpha I + \beta N from eq (6b). <I>(thanks to Matt Pharr)</I>
<P>
p. 327, "Path racing" should be "Path tracing". <I>(thanks to <a href="https://pharr.org/matt/blog/2019/01/26/an-introduction-to-ray-tracing.html">Matt Pharr</a>)</I>
<HR>
<P>
The remaining errata below is originally from <a href="https://web.archive.org/web/19991022234049/http://wuarchive.wustl.edu:80/graphics/graphics/books/erratas/IntroToRT">The Wayback Machine</a>. All of these errors are corrected in the <a href="http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf">PDF</a> and <a href="http://www.realtimerendering.com/raytracing/Andrew%20S.%20Glassner%20-%20An%20Introduction%20to%20Ray%20tracing%20(The%20Morgan%20Kaufmann%20Series%20in%20Computer%20Graphics)%20(1989).djvu">DJVU</a> versions. This errata listing is here for people who have the first printing of the book.
<PRE>
p. 86, last paragraph before Algebraic Surfaces header: change "where all
the the intersections of the ray with all the objects in the CSG tree are
required" to end as "may be required".
-----
p. 88, equation "t = etc": change from "t = etc" to "t = -etc", i.e. a minus
sign is missing, so negate the right hand side of the equation.
-----
p. 91, last formula in the Sphere section (in the text): change to
x1^2 + y1^2 + z1^2 = 1
^
subscript was "0"
-----
p. 91, in the Paraboloid section, second equation: change the two minus signs
to plus signs (i.e. before z1 and z0).
-----
p. 93, torus equation corrections: change two equations
a2 = 2(x1^2+y1^2+z1^2)((x0^2+y0^2+z0^2)-(a^2+b^2))
+ 4 * (x0x1+y0y1+z0z1)^2 + 4a^2z1^2
^ ^^ ^
was "2" add was "-"
a1 = 4 * (x0x1+y0y1+z0z1)((x0^2+y0^2+z0^2)-(a^2+b^2))
+ 8a^2 * z0 * z1
^
was "-"
a0 = ((x0^2+y0^2+z0^2)-(a^2+b^2))^2 - 4a^2(b^2-z0^2)
^
squaring was left off
-----
p. 95, last sentence before the Simplicial Splines and Steiner Patches
section: change "of" to "or, i.e. it should read "numerical techniques or
subdivision algorithms".
-----
p. 95, last formula on the page: change to
z(u,v) = h y(v)
^
subscript was "x"
-----
p. 100, Figure 7 is wrong.
The upper figure is in error; the lower part is correct. In the upper figure,
the outer contour is the silhouette of a 3D parametric surface. Curve c1 is
the intersection of one plane with that surface, and c2 is the intersection of
another plane, perpendicular to the first. The line of intersection of the
two planes is collinear with the ray, indicated by the line with the arrow.
The other three lines in the figure are extraneous and should be ignored. The
lower part of the figure shows the two curves in uv space.
-----
p. 101, the last sentence in the Bicubic Patches section: change "this can
involve a loss of extra computation" should be "this can involve extra
computation".
-----
p. 101, the second equation in the Numerical Methods section: change the
second "=" in the line to a "+" (it's the only equation with two "=" in it).
-----
p. 105, the 2-D line equation: change to
(y1)x - (x1)y - (x0y1 - y0x1) = 0
^
was a "+"
-----
p. 108, formula for f: This does not agree with Fig. 10. Using the same
notation as in the figure, change to:
For this shape, f is
2 2 2 2
(x-r (u)) + (y-r (u)) + (z - r (u)) - a (u) = 0
x y z
where (r , r , r ) is the center of the sphere and a is the radius.
x y z
-----
p. 140, equation (7h): missing right parenthesis, change to "...- 1)))N."
-----
p. 148, section on distribution term D, 8th line: change "the angle between L
and H" to "the angle between N and H".
-----
p. 156, section 5.4, 2nd paragraph: change "spectral transmission curve" to
"specular transmission curve".
-----
p. 158, in Fdt(lambda) definition: change "diffuse reflection" to "diffuse
transmission".
-----
p. 158, line immediately after Fdt(lambda) definition: change "We note that
the diffuse reflectance" to "We note that the diffuse transmittance".
-----
p. 238, Fig. 24: A chunk is missing in the upper left corner. The labels
should read: "Directions crossed with", and "Applies to".
-----
p. 260, reference by Gervautz: change "Comput. Graph." to "Computers and
Graphics".
-----
p. 288, immediately after the DERIVATION OF REFRACTION FORMULAS header: The
introductory paragraph is missing. It reads:
We derive three alternative formulas for the refracted ray direction in ray
tracing in order to prove their equivalence and to demonstrate the process of
translating physical laws into optimized computational formulas.
It is common knowledge that light rays refract when they strike an interface
between two different transparent media, such as air-water, air-glass, or
glass-water. In 1621 Dutch mathematician Willebrord Snell discovered a
formula quantifying this observation: the ratio of the sines of the incident
and refracted angles equals the ratio of the indices of refraction of the two
materials. Snell's law is:
eta sin( theta ) = eta sin( theta )
1 1 2 2
where theta-sub-1 is the angle of incidence, theta-sub-2 is the angle of
refraction (both measured from the perpendicular to the interface) and
eta-sub-1 and eta-sub-2 are the two indices of refraction on the incident and
refracted sides of the interface, respectively.
Light passing through a material slows relative to its speed in a vacuum by a
factor equal to the index of refraction of that material. In fact, Snell's
law is a simple consequence of this speed variation and Fermat's _Principle of
Least Time_, which states that light takes the fastest path to get from one
point to another [Feynman63].
For computation we need to recast Snell's law in terms of (x,y,z) direction
vectors. This can be done in several different ways. In the derivations
below we make extensive use of angles and trigonometry, but thankfully, it is
possible to eliminate all of these terms from the final formulas, so
theta-sub-1 and theta-sub-2 need never be computed. As a convention, vectors
are upper case and scalars are lower case.
-----
END
</PRE>
<tr>
<td valign="top"><img src="spacer.gif" alt="" height="1" border="0"/><br/>
<br/></td>
</tr>
</table>
</div>
<div id="footer" class="clearfix">
<ul>
<li>Contacts:</li>
<li><a href="mailto:[email protected]">Tomas</a></li>
<li><a href="mailto:[email protected]">Eric</a></li>
<li><a href="mailto:[email protected]">Naty</a></li>
</ul>
</div>
</div>
<script type="text/javascript">
/* <![CDATA[ */
(function(){try{var s,a,i,j,r,c,l=document.getElementsByTagName("a"),t=document.createElement("textarea");for(i=0;l.length-i;i++){try{a=l[i].getAttribute("href");if(a&&"www.cloudflare.com/email-protection"==a.substr(7 ,35)){s='';j=43;r=parseInt(a.substr(j,2),16);for(j+=2;a.length-j&&a.substr(j,1)!='X';j+=2){c=parseInt(a.substr(j,2),16)^r;s+=String.fromCharCode(c);}j+=1;s+=a.substr(j,a.length-j);t.innerHTML=s.replace(/</g,"<").replace(/>/g,">");l[i].setAttribute("href","mailto:"+t.value);}}catch(e){}}}catch(e){}})();
/* ]]> */
</script>
</body>
</html>