From 473728d6c89bb3d35937f41d380ab9a6423b751b Mon Sep 17 00:00:00 2001 From: erdogant Date: Mon, 7 Oct 2024 21:37:55 +0200 Subject: [PATCH] udpatting examples --- bnlearn/examples.py | 10 +- .../test_learn_discrete_bayes_net.py | 286 ------------------ 2 files changed, 6 insertions(+), 290 deletions(-) delete mode 100644 bnlearn/tests/discretize/test_learn_discrete_bayes_net.py diff --git a/bnlearn/examples.py b/bnlearn/examples.py index 0e13d6b8..f6bff150 100644 --- a/bnlearn/examples.py +++ b/bnlearn/examples.py @@ -9,12 +9,12 @@ for cii_test in cii_tests: # Learn the DAG in data using hillclimbsearch and BIC - model = bn.structure_learning.fit(df, methodtype='pc', scoretype='bic', params_pc={'ci_test':cii_test,'alpha': 0.05}, verbose=3) + model = bn.structure_learning.fit(df, methodtype='pc', scoretype='bic', params_pc={'ci_test': cii_test,'alpha': 0.05}, verbose=3) # model = bn.structure_learning.fit(df, methodtype='pc', params_pc={'ci_test':'freeman_tuckey','alpha': 0.05}) - + # Compute edge weights using ChiSquare independence test. model = bn.independence_test(model, df, test='chi_square', prune=False) - + # Plot the best DAG bn.plot(model, edge_labels='pvalue', params_static={'maxscale': 4, 'figsize': (15, 15), 'font_size': 14, 'arrowsize': 10}) bn.plot(model) @@ -182,9 +182,11 @@ # Load example mixed dataset df = bn.import_example(data='auto_mpg') +del df['origin'] # Structure learning -model = bn.structure_learning.fit(df, methodtype='hc') +# model = bn.structure_learning.fit(df, methodtype='hc') +model = bn.structure_learning.fit(df, methodtype='pc', params_pc={'pearsonr': cii_test,'alpha': 0.05}) # Compute edge strength model = bn.independence_test(model, df) diff --git a/bnlearn/tests/discretize/test_learn_discrete_bayes_net.py b/bnlearn/tests/discretize/test_learn_discrete_bayes_net.py deleted file mode 100644 index 0bd05f88..00000000 --- a/bnlearn/tests/discretize/test_learn_discrete_bayes_net.py +++ /dev/null @@ -1,286 +0,0 @@ -from itertools import zip_longest -from pathlib import Path - -import pytest -import numpy as np -import pandas as pd - -from ...discretize.learn_discrete_bayes_net import ( - bn_discretizer_free_number_rep, - bn_discretizer_iteration_converge, - bn_discretizer_p_data_model, - continuous_to_discrete, - discretize_all, - equal_width_disc, - graph_to_markov, - graph_to_reverse_conti_order, - graph_to_reverse_order, - largest_class_value, - log_prob_single_edge_last_term, - log_prob_spouse_child_data, - one_iteration, - prior_of_intval, - sort_disc_by_vorder, - sortperm, -) - -# TODO replace tuples and scalars with lists to be more consistent everywhere -graph = [1, (1, 2), (2, 4), (4, 0), (0, 4, 2, 6), (2, 3), (3, 5), 7] -discrete_index = [1, 6, 7] -continuous_index = [0, 2, 3, 4, 5] -sort_continuous = [5, 3, 0, 4, 2] - -# TODO replace tuples and scalars with lists to be more consistent everywhere -markov = { - 0: ([4], [(6, 4, 2)]), - 1: ([], [2]), - 2: ([1], [4, (6, 0, 4), 3]), - 3: ([2], [5]), - 4: ([2], [0, (6, 0, 2)]), - 5: ([3], []), - 6: ([0, 4, 2], []), - 7: ([], []), -} - -test_data = Path("./bnlearn/tests/discretize/data") - - -@pytest.fixture() -def data(): - return pd.read_csv( - test_data / "auto_mpg.csv", - dtype={ - "mpg": "float64", - "cylinders": "int64", - "displacement": "float64", - "horsepower": "float64", - "weight": "float64", - "acceleration": "float64", - "model_year": "int64", - "origin": "int64", - }, - ) - - -@pytest.fixture() -def data_equal_width(): - return pd.read_csv(test_data / "equal_width.csv", dtype="int64") - - -@pytest.fixture() -def data_one_iteration(): - return pd.read_csv(test_data / "one_iteration.csv", dtype="int64") - - -@pytest.fixture() -def data_prior_of_intval(): - return pd.read_csv(test_data / "prior_of_intval.csv") - - -@pytest.fixture() -def continuous_sortperm(): - return pd.read_csv(test_data / "continuous_sortperm.csv", dtype="int64") - - -def test_fixtures(data, data_equal_width): - assert data.shape == (392, 8) - assert list(data.dtypes[discrete_index].unique()) == [np.dtype("int64")] - assert list(data.dtypes[continuous_index].unique()) == [np.dtype("float64")] - - assert data_equal_width.shape == (392, 8) - assert list(data_equal_width.dtypes.unique()) == [np.dtype("int64")] - - -@pytest.mark.parametrize( - "target,parent,child_spouse", [(t, p, c) for (t, (p, c)) in markov.items()] -) -def test_graph_to_markov(target, parent, child_spouse): - parent_set, child_spouse_set = graph_to_markov(graph, target) - assert parent_set == parent - assert child_spouse_set == child_spouse - - -def test_graph_to_reverse_order(): - assert graph_to_reverse_order(graph) == [7, 5, 3, 6, 0, 4, 2, 1] - - -def test_graph_to_reverse_conti_order(): - actual = graph_to_reverse_conti_order(graph, continuous_index) - assert actual == sort_continuous - - -def test_log_prob_single_edge_last_term(): - expected = np.genfromtxt( - test_data / "log_prob_single_edge_last_term.csv", delimiter="," - ) - inv_p = log_prob_single_edge_last_term(pd.Series([1, 2, 3, 4, 5, 4, 3, 2, 1])) - np.testing.assert_allclose(inv_p, expected) - - -def test_continuous_to_discrete(data, data_one_iteration): - bin_edge = [9.0, 12.5, 17.55, 20.9, 28.9, 46.6] - expected = data_one_iteration.iloc[:, 0] - actual = continuous_to_discrete(data.iloc[:, 0], bin_edge) - pd.testing.assert_series_equal(actual, expected) - - -def test_sort_disc_by_vorder(): - continuous_order = [6, 4, 1, 5, 3] - disc_edge = [ - np.array([8.0, 12.35]), - np.array([46.0]), - np.array([9.0, 15.25]), - np.array([1613.0]), - np.array([68.0]), - ] - - expected = [ - np.array([9.0, 15.25]), - np.array([68.0]), - np.array([46.0]), - np.array([1613.0]), - np.array([8.0, 12.35]), - ] - actual = sort_disc_by_vorder(continuous_order, disc_edge) - - for a, b in zip_longest(actual, expected): - np.testing.assert_allclose(a, b) - - -def test_log_prob_spouse_child_data_one(): - data = pd.read_csv(test_data / "log_prob_spouse_child_data_one.csv", header=None) - child_data = data.iloc[:, [0]] - spouse_data = data.iloc[:, [1]] - expected = data.iloc[:, 2:] - actual = log_prob_spouse_child_data(child_data, spouse_data) - np.testing.assert_allclose(actual[:, : expected.shape[1]], expected) - - -def test_log_prob_spouse_child_data_three(): - data = pd.read_csv(test_data / "log_prob_spouse_child_data_three.csv", header=None) - child_data = data.iloc[:, [0]] - spouse_data = data.iloc[:, 1:3] - expected = data.iloc[:, 3:] - actual = log_prob_spouse_child_data(child_data, spouse_data) - np.testing.assert_allclose(actual[:, : expected.shape[1]], expected) - - -@pytest.mark.parametrize("target", continuous_index) -def test_equal_width_disc(target, data, data_equal_width): - actual = equal_width_disc(data.iloc[:, target], 13) - assert list(actual.values) == list(data_equal_width.iloc[:, target]) - assert actual.dtype == np.dtype("int64") - - -@pytest.mark.parametrize("i", range(len(continuous_index))) -def test_prior_of_intval(i: int, continuous_sortperm, data, data_prior_of_intval): - target = continuous_index[i] - increase_order = continuous_sortperm.iloc[:, i] - conti = data.iloc[increase_order, target] - - actual = prior_of_intval(conti, 13) - expected = data_prior_of_intval.iloc[:, i] - np.testing.assert_allclose(actual, expected) - - -def test_largest_class_value(data): - assert largest_class_value(data.iloc[:, discrete_index]) == 13 - - -def test_bn_discretizer_p_data_model(data, data_equal_width, continuous_sortperm): - i = 4 - target = continuous_index[i] - increase_order = continuous_sortperm.iloc[:, i] - - data_integer_sort = data_equal_width.iloc[increase_order, :] - parent_set, child_spouse_set = markov[target] - - expected = pd.read_csv(test_data / "bn_discretizer_p_data_model.csv", header=None) - actual = bn_discretizer_p_data_model( - data_integer_sort, parent_set, child_spouse_set, False - ) - np.testing.assert_allclose(actual[0:10, :], expected.to_numpy()) - - -def test_bn_discretizer_free_number_rep(data, data_equal_width, continuous_sortperm): - i = 4 - target = continuous_index[i] - increase_order = continuous_sortperm.iloc[:, i] - - conti = data.iloc[increase_order, target] - data_integer_sort = data_equal_width.iloc[increase_order, :] - parent_set, child_spouse_set = markov[target] - - actual = bn_discretizer_free_number_rep( - conti, data_integer_sort, parent_set, child_spouse_set - ) - np.testing.assert_allclose(actual, [8.0, 10.25, 12.35, 13.75, 16.05, 24.8]) - - -@pytest.mark.parametrize("i,column", enumerate(continuous_index)) -def test_sortperm(i, column, data, continuous_sortperm): - pd.testing.assert_series_equal( - sortperm(data.iloc[:, column]), continuous_sortperm.iloc[:, i] - ) - - -def test_one_iteration(data, data_equal_width, data_one_iteration): - actual = one_iteration( - data, data_equal_width, graph, discrete_index, sort_continuous, 13 - ) - - disc_edge_collect = [ - np.array([8.0, 10.25, 12.35, 13.75, 16.05, 24.8]), - np.array([46.0, 71.5, 99.0, 127.0, 151.0, 191.5, 195.5, 230.0]), - np.array([9.0, 12.5, 17.55, 20.9, 28.9, 46.6]), - np.array([1613.0, 2092.5, 2513.0, 2959.5, 3657.5, 4826.0, 5140.0]), - np.array([68.0, 70.5, 93.5, 109.0, 159.5, 284.5, 414.5, 455.0]), - ] - - for a, b in zip_longest(actual[1], disc_edge_collect): - np.testing.assert_allclose(a, b) - - np.testing.assert_allclose(actual[0], data_one_iteration) - - -def test_bn_discretizer_iteration_converge_equal_width(data, data_equal_width): - actual, _ = bn_discretizer_iteration_converge( - data, graph, discrete_index, sort_continuous, 0 - ) - pd.testing.assert_frame_equal(actual, data_equal_width) - - -def test_bn_discretizer_iteration_converge_one(data): - expected = pd.read_csv( - test_data / "bn_discretizer_iteration_converge_cut_time_1.csv" - ) - - actual, _ = bn_discretizer_iteration_converge( - data, graph, discrete_index, sort_continuous, 1 - ) - pd.testing.assert_frame_equal(actual, expected) - - -def test_bn_discretizer_iteration_converge_eight(data): - expected = pd.read_csv( - test_data / "bn_discretizer_iteration_converge_cut_time_8.csv" - ) - - actual, _ = bn_discretizer_iteration_converge( - data, graph, discrete_index, sort_continuous, 8 - ) - pd.testing.assert_frame_equal(actual, expected) - - -def test_discretize_all(data): - _, disc_edges = discretize_all(data, graph, continuous_index, 8) - expected = [ - [9.0, 15.25, 17.65, 20.9, 25.65, 28.9, 46.6], - [68.0, 70.5, 93.5, 109.0, 159.5, 259.0, 284.5, 455.0], - [46.0, 71.5, 99.0, 127.0, 230.0], - [1613.0, 2115.0, 2480.5, 2959.5, 3657.5, 5140.0], - [8.0, 12.35, 13.75, 16.05, 22.85, 24.8], - ] - - for a, b in zip_longest(disc_edges, expected): - np.testing.assert_allclose(a, b)