Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Convertin
#> Warning: There is 1 article with missing first author surname and first author first#> name.#> Warning: There is 1 article with missing year of publication.
-#> Rows: 107Columns: 2
-#> ──Column specification────────────────────────────────────────────────────────
-#> Delimiter: ";"
-#> chr (2): parameter_type_short, parameter_type_full
-#>
-#> ℹ Use `spec()` to retrieve the full column specification for this data.
-#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.#> Warning: Unknown or uninitialised column: `other_delay_start`.#> Warning: Unknown or uninitialised column: `other_delay_end`.#> Note: the params dataframe does not have a covidence_id column
@@ -586,15 +581,8 @@
Entries with probability distrib
have parametric distributions).
ebola_data<-load_epidata("ebola")
-#> ℹ ebola does not have any extracted outbreaks
+#> ℹ ebola does not have any extracted outbreaks#> information. Outbreaks will be set to NULL.
-#> Rows: 107Columns: 2
-#> ──Column specification────────────────────────────────────────────────────────
-#> Delimiter: ";"
-#> chr (2): parameter_type_short, parameter_type_full
-#>
-#> ℹ Use `spec()` to retrieve the full column specification for this data.
-#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.#> ✔ Data loaded for ebola
We will again subset the data to just use the epidemiological
parameter table, and select those rows containing a serial interval.
@@ -711,15 +699,8 @@
Specifying the proba
parameters ($params).
ebola_data<-load_epidata("ebola")
-#> ℹ ebola does not have any extracted outbreaks
+#> ℹ ebola does not have any extracted outbreaks#> information. Outbreaks will be set to NULL.
-#> Rows: 107Columns: 2
-#> ──Column specification────────────────────────────────────────────────────────
-#> Delimiter: ";"
-#> chr (2): parameter_type_short, parameter_type_full
-#>
-#> ℹ Use `spec()` to retrieve the full column specification for this data.
-#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.#> ✔ Data loaded for ebolaebola_params<-ebola_data$params
Here we will use the serial interval for Ebola reported by Faye et al. (2015). This is stored, over two
diff --git a/articles/data_protocol.html b/articles/data_protocol.html
index a0df63150..19e0610d0 100644
--- a/articles/data_protocol.html
+++ b/articles/data_protocol.html
@@ -101,6 +101,8 @@
+
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
+#> object 'type_sum.accel' not found
## Error in get(paste0(generic, ".", class), envir = get_method_env()) :
+## object 'type_sum.accel' not found
## Returning 125 results that match the criteria (100 are parameterised). ## Use subset to filter by entry variables or single_epiparameter to return a single entry. ## To retrieve the citation for each use the 'get_citation' function
@Manual{,
title = {epiparameter: Library of Epidemiological Parameters with Helper Functions and Classes},
author = {Joshua W. Lambert and Adam Kucharski and Carmen Tamayo},
- year = {2024},
+ year = {2025},
doi = {10.5281/zenodo.11110881},
url = {https://epiverse-trace.github.io/epiparameter/},
}
# S3 method for class 'epiparameter'
+lines(x, cumulative =FALSE, ...)
+
+
+
+
Arguments
+
+
+
x
+
An <epiparameter> object.
+
+
+
cumulative
+
A boolean logical, default is FALSE.
+cumulative = TRUE plots the cumulative distribution function (CDF).
+
+
+
...
+
further arguments passed to or from other methods.
+
+
+
+
+
Examples
+
ebola_si<-epiparameter_db(disease ="Ebola", epi_name ="serial")
+#> Returning 4 results that match the criteria (4 are parameterised).
+#> Use subset to filter by entry variables or single_epiparameter to return a single entry.
+#> To retrieve the citation for each use the 'get_citation' function
+plot(ebola_si[[1]])
+lines(ebola_si[[2]])
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/reference/plot.multi_epiparameter-1.png b/reference/plot.multi_epiparameter-1.png
new file mode 100644
index 000000000..0fa6c2f93
Binary files /dev/null and b/reference/plot.multi_epiparameter-1.png differ
diff --git a/reference/plot.multi_epiparameter.html b/reference/plot.multi_epiparameter.html
new file mode 100644
index 000000000..5453b57f1
--- /dev/null
+++ b/reference/plot.multi_epiparameter.html
@@ -0,0 +1,136 @@
+
+plot() method for <multi_epiparameter> class — plot.multi_epiparameter • epiparameter
+ Skip to contents
+
+
+
ebola_si<-epiparameter_db(disease ="Ebola", epi_name ="serial")
+#> Returning 4 results that match the criteria (4 are parameterised).
+#> Use subset to filter by entry variables or single_epiparameter to return a single entry.
+#> To retrieve the citation for each use the 'get_citation' function
+plot(ebola_si)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/search.json b/search.json
index 29d51451c..c0cb2c2d4 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://epiverse-trace.github.io/epiparameter/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2024 epiparameter authors Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_from_epireview.html","id":"converting-from-epireview-entries-into-an-epiparameter-object","dir":"Articles","previous_headings":"","what":"Converting from {epireview} entries into an object","title":"Using {epireview} with {epiparameter}","text":"{epireview} package nicely provides epidemiological parameter data systematically reviewing literature, {epiparameter} provides custom data structures working epidemiological data R. Therefore, reading data {epireview} R package converting object provide greatest utility applied outbreak analytics. start simple example reading Marburg data {epireview} converting object using as_epiparameter() function {epiparameter} package. loads list four tables, specifically tibbles, contain bibliographic information ($articles), epidemiological parameters ($params), epidemiological models ($models), outbreak information ($outbreaks). start just using epidemiological parameter table convert information . parameters, subset data keep rows contain incubation periods Marburg. select first entry use first example: can simply pass epidemiological parameter set as_epiparameter() conversion. resulting contain parameterised probability distribution, instead contains range incubation period ($summary_stats), $metadata shows single case South Africa.","code":"marburg_data <- load_epidata(\"marburg\") #> Warning: There is 1 article with missing first author surname. #> Warning: There is 1 article with missing first author surname and first author first #> name. #> Warning: There is 1 article with missing year of publication. #> Rows: 107 Columns: 2 #> ── Column specification ──────────────────────────────────────────────────────── #> Delimiter: \";\" #> chr (2): parameter_type_short, parameter_type_full #> #> ℹ Use `spec()` to retrieve the full column specification for this data. #> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message. #> Warning: Unknown or uninitialised column: `other_delay_start`. #> Warning: Unknown or uninitialised column: `other_delay_end`. #> Note: the params dataframe does not have a covidence_id column #> Note: the models dataframe does not have a covidence_id column #> Note: the outbreaks dataframe does not have a covidence_id column #> ✔ Data loaded for marburg names(marburg_data) #> [1] \"articles\" \"params\" \"models\" \"outbreaks\" marburg_params <- marburg_data$params marburg_incubation_period <- marburg_params[ marburg_params$parameter_type_short == \"incubation_period\", ] marburg_incubation_period #> # A tibble: 2 × 61 #> parameter_data_id article_id parameter_type parameter_value parameter_unit #> #> 1 c2a35e68034b72580654… 6 Human delay -… NA Days #> 2 0106582cf5ed3c52d5e9… 20 Human delay -… NA Days #> # ℹ 56 more variables: parameter_lower_bound , #> # parameter_upper_bound , parameter_value_type , #> # parameter_uncertainty_single_value , #> # parameter_uncertainty_singe_type , #> # parameter_uncertainty_lower_value , #> # parameter_uncertainty_upper_value , parameter_uncertainty_type , #> # cfr_ifr_numerator , cfr_ifr_denominator , … marburg_incub <- marburg_incubation_period[1, ] marburg_incub #> # A tibble: 1 × 61 #> parameter_data_id article_id parameter_type parameter_value parameter_unit #> #> 1 c2a35e68034b72580654… 6 Human delay -… NA Days #> # ℹ 56 more variables: parameter_lower_bound , #> # parameter_upper_bound , parameter_value_type , #> # parameter_uncertainty_single_value , #> # parameter_uncertainty_singe_type , #> # parameter_uncertainty_lower_value , #> # parameter_uncertainty_upper_value , parameter_uncertainty_type , #> # cfr_ifr_numerator , cfr_ifr_denominator , … marburg_incub_epiparameter <- as_epiparameter(marburg_incub) #> Using Gear (1975). \".\" __. #> To retrieve the citation use the 'get_citation' function #> Warning: Cannot create full citation for epidemiological parameters without bibliographic information #> see ?as_epiparameter for help. #> No adequate summary statistics available to calculate the parameters of the NA distribution #> Unparameterised object marburg_incub_epiparameter #> Disease: Marburg Virus Disease #> Pathogen: Marburg virus #> Epi Parameter: human delay incubation period #> Study: Gear (1975). \".\" __. #> Distribution: NA #> Mean: NA [NA% CI: NA, NA] (Days) #> Median: NA [NA% CI: NA, NA] (Days) #> Range: [c(7, 8)] (Days) marburg_incub_epiparameter$summary_stats #> $mean #> [1] NA #> #> $mean_ci_limits #> [1] NA NA #> #> $mean_ci #> [1] NA #> #> $sd #> [1] NA #> #> $sd_ci_limits #> [1] NA NA #> #> $sd_ci #> [1] NA #> #> $median #> [1] NA #> #> $median_ci_limits #> [1] NA NA #> #> $median_ci #> [1] NA #> #> $dispersion #> [1] NA #> #> $dispersion_ci_limits #> [1] NA NA #> #> $dispersion_ci #> [1] NA #> #> $quantiles #> [1] NA #> #> $range #> [1] 7 8 marburg_incub_epiparameter$metadata #> $units #> [1] \"Days\" #> #> $sample_size #> [1] 1 #> #> $region #> [1] \"Johannesburg, South Africa\" #> #> $transmission_mode #> [1] NA #> #> $vector #> [1] NA #> #> $extrinsic #> [1] FALSE #> #> $inference_method #> [1] NA"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_from_epireview.html","id":"creating-an-epiparameter-with-full-citation","dir":"Articles","previous_headings":"","what":"Creating an with full citation","title":"Using {epireview} with {epiparameter}","text":"last example showed convert epidemiological parameter information, however, may noticed citation created contain information full citation. order provide complete citation object, highly recommended know provenance parameters can correctly attribute original authors, need also provide bibliographic information {epireview} well epidemiological parameters. article data needs loaded {epireview} using epireview::load_epidata_raw() rather epireview::load_data() load_data() subsets bibliographic information provide: \"id\", \"first_author_surname\", \"year_publication\", \"article_label\" columns. need match entry epidemiological parameter table citation information article table ensure using correct citation parameter set. Thankfully, can easily achieved {epireview} provides unique IDs table link entries. Now can repeat example converting shown , time pass bibliographic information well epidemiological parameter information create full citation. bibliographic information needs passed article argument. as_epiparameter() function S3 generic. familiar S3 object-oriented programming R, detail important, however, mean article argument explicitly function definition as_epiparameter() (.e. show autocomplete typing function shown read function help page ?as_epiparameter()). Instead, argument specified part ... argument. article argument required converting data {epireview} , data can converted objects require argument.","code":"marburg_incub_epiparameter$citation #> Gear (1975). \".\" __. marburg_articles <- load_epidata_raw( pathogen = \"marburg\", table = \"article\" ) marburg_articles #> # A tibble: 58 × 25 #> article_id pathogen covidence_id first_author_first_n…¹ article_title doi #> #> 1 1 Marburg v… 2059 G A Haemorrhagic… NA #> 2 2 Marburg v… 2042 Christian Antibodies t… NA #> 3 3 Marburg v… 1649 Y The origin a… 10.1… #> 4 4 Marburg v… 1692 D.H. Marburg-Viru… NA #> 5 5 Marburg v… 2597 E. D. Filovirus ac… NA #> 6 6 Marburg v… 3795 JS Outbreak of … 10.1… #> 7 7 Marburg v… 2596 E.D. Haemorrhagic… NA #> 8 8 Marburg v… 1615 O Viral hemorr… 10.4… #> 9 9 Marburg v… 1693 Smiley Suspected Ex… 10.1… #> 10 10 Marburg v… 1692 D Marburg-viru… NA #> # ℹ 48 more rows #> # ℹ abbreviated name: ¹first_author_first_name #> # ℹ 19 more variables: journal , year_publication , volume , #> # issue , page_first , page_last , paper_copy_only , #> # notes , first_author_surname , double_extracted , #> # qa_m1 , qa_m2 , qa_a3 , qa_a4 , qa_d5 , #> # qa_d6 , qa_d7 , score , id article_row <- match(marburg_incub$id, marburg_articles$id) article_row #> [1] 6 marburg_incub_article <- marburg_articles[article_row, ] marburg_incub_article #> # A tibble: 1 × 25 #> article_id pathogen covidence_id first_author_first_n…¹ article_title doi #> #> 1 6 Marburg vi… 3795 JS Outbreak of … 10.1… #> # ℹ abbreviated name: ¹first_author_first_name #> # ℹ 19 more variables: journal , year_publication , volume , #> # issue , page_first , page_last , paper_copy_only , #> # notes , first_author_surname , double_extracted , #> # qa_m1 , qa_m2 , qa_a3 , qa_a4 , qa_d5 , #> # qa_d6 , qa_d7 , score , id marburg_incub_epiparameter <- as_epiparameter( marburg_incub, article = marburg_incub_article ) #> Using Gear (1975). \"Outbreak of Marburg virus disease in Johannesburg.\" _The #> British Medical Journal_. doi:10.1136/bmj.4.5995.489 #> . #> To retrieve the citation use the 'get_citation' function #> No adequate summary statistics available to calculate the parameters of the NA distribution #> Unparameterised object marburg_incub_epiparameter #> Disease: Marburg Virus Disease #> Pathogen: Marburg virus #> Epi Parameter: human delay incubation period #> Study: Gear (1975). \"Outbreak of Marburg virus disease in Johannesburg.\" _The #> British Medical Journal_. doi:10.1136/bmj.4.5995.489 #> . #> Distribution: NA #> Mean: NA [NA% CI: NA, NA] (Days) #> Median: NA [NA% CI: NA, NA] (Days) #> Range: [c(7, 8)] (Days) marburg_incub_epiparameter$citation #> Gear (1975). \"Outbreak of Marburg virus disease in Johannesburg.\" _The #> British Medical Journal_. doi:10.1136/bmj.4.5995.489 #> ."},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_from_epireview.html","id":"multi-row-epireview-entries","dir":"Articles","previous_headings":"","what":"Multi-row {epireview} entries","title":"Using {epireview} with {epiparameter}","text":"general, required values parameter represented single entry epireview. cases, e.g. Marburg Virus Disease Ebola Virus Disease (first pathogens PERG team extracted), values captured parameter multiple rows. trying avoid linking entries challenging, still cases linked parameters different rows. provide information limitations section . way {epireview} data stored means epidemiological parameter entries require multiple rows. can , example, contain two summary statistics (e.g. mean standard deviation) kept separate rows. order create objects contains full information entry multiple rows epidemiological parameters table {epireview} can given as_epiparameter() create single object. can search entries data multiple rows checking duplicated parameter types IDs. Remember possible convert delay distributions epiparameter objects (.e. known Human delay parameter types {epireview}). case two studies Marburg one entry (row) {epireview} database. studies select mean standard deviation. case, know mean standard deviation chosen rows correspond estimation process read corresponding article. However, currently identifiers {epireview} params database Marburg, Ebola Lassa directly identify two rows mean values correspond standard deviation. {epireview} team currently working rectifying issue. Therefore, encourage readers manually verify data subsets, ensure entries selected indeed multiple rows reported epidemiological parameter. future {epireview} pathogens (excluding SARS) mean standard deviation estimates match form one row $params database. Current software development {epireview} working ensuring compatibility formats. can now convert .","code":"multi_row_entries <- duplicated(marburg_params$parameter_type) & duplicated(marburg_params$id) multi_row_ids <- marburg_params$id[multi_row_entries] multi_row_marburg_params <- marburg_params[marburg_params$id %in% multi_row_ids, ] multi_row_marburg_params #> # A tibble: 42 × 61 #> parameter_data_id article_id parameter_type parameter_value parameter_unit #> #> 1 0106582cf5ed3c52d5e… 20 Human delay -… NA Days #> 2 ce78f707a585d8bb23a… 22 Seroprevalenc… 0 Percentage (%) #> 3 ca720828fd6ccb18844… 22 Seroprevalenc… 0 NA #> 4 61fbb9dfc021abf5bd1… 22 Seroprevalenc… 0 Percentage (%) #> 5 29c8ca74306713a990c… 20 Severity - ca… NA NA #> 6 056a8d6b5f9aee3622d… 27 Human delay -… 9 Days #> 7 ce3976e2e15df3f6fb9… 27 Human delay -… 5.4 Days #> 8 3bf73665fa67a6ba7f7… 27 Human delay -… 7 Days #> 9 ba019f18acac9c5b0b7… 27 Human delay -… 9.3 Days #> 10 71798b4154011dcd008… 27 Human delay -… 9 Days #> # ℹ 32 more rows #> # ℹ 56 more variables: parameter_lower_bound , #> # parameter_upper_bound , parameter_value_type , #> # parameter_uncertainty_single_value , #> # parameter_uncertainty_singe_type , #> # parameter_uncertainty_lower_value , #> # parameter_uncertainty_upper_value , … multi_row_marburg_params$parameter_value_type #> [1] NA NA NA #> [4] NA NA \"Mean\" #> [7] \"Standard Deviation\" \"Median\" \"Mean\" #> [10] \"Median\" \"Mean\" \"Mean\" #> [13] \"Mean\" \"Mean\" \"Mean\" #> [16] NA NA NA #> [19] NA \"Mean\" \"Mean\" #> [22] \"Mean\" \"Mean\" NA #> [25] NA \"Median\" NA #> [28] NA NA NA #> [31] \"Other\" NA NA #> [34] NA \"Other\" \"Other\" #> [37] \"Other\" \"Other\" \"Other\" #> [40] \"Other\" \"Mean\" \"Other\" marburg_gt <- multi_row_marburg_params[ multi_row_marburg_params$parameter_data_id %in% c(\"056a8d6b5f9aee3622d3bd8b715d4296\", \"ce3976e2e15df3f6fb92f6deb2db2a29\"), ] marburg_gt #> # A tibble: 2 × 61 #> parameter_data_id article_id parameter_type parameter_value parameter_unit #> #> 1 056a8d6b5f9aee3622d3… 27 Human delay -… 9 Days #> 2 ce3976e2e15df3f6fb92… 27 Human delay -… 5.4 Days #> # ℹ 56 more variables: parameter_lower_bound , #> # parameter_upper_bound , parameter_value_type , #> # parameter_uncertainty_single_value , #> # parameter_uncertainty_singe_type , #> # parameter_uncertainty_lower_value , #> # parameter_uncertainty_upper_value , parameter_uncertainty_type , #> # cfr_ifr_numerator , cfr_ifr_denominator , … marburg_gt_epiparameter <- as_epiparameter(marburg_gt) #> Using Ajelli (2012). \".\" __. #> To retrieve the citation use the 'get_citation' function #> Warning: Cannot create full citation for epidemiological parameters without bibliographic information #> see ?as_epiparameter for help. #> No adequate summary statistics available to calculate the parameters of the NA distribution #> Unparameterised object marburg_gt_epiparameter #> Disease: Marburg Virus Disease #> Pathogen: Marburg virus #> Epi Parameter: human delay generation time #> Study: Ajelli (2012). \".\" __. #> Distribution: NA #> Mean: 9 [95% CI: 8.2, 10] (Days) #> Median: NA [NA% CI: NA, NA] (Days) #> Range: [c(NA, NA)] (Days) marburg_gt_epiparameter$summary_stats #> $mean #> [1] 9 #> #> $mean_ci_limits #> [1] 8.2 10.0 #> #> $mean_ci #> [1] 95 #> #> $sd #> [1] 5.4 #> #> $sd_ci_limits #> [1] 3.9 8.6 #> #> $sd_ci #> [1] 95 #> #> $median #> [1] NA #> #> $median_ci_limits #> [1] NA NA #> #> $median_ci #> [1] NA #> #> $dispersion #> [1] NA #> #> $dispersion_ci_limits #> [1] NA NA #> #> $dispersion_ci #> [1] NA #> #> $quantiles #> [1] NA #> #> $range #> [1] NA NA"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_from_epireview.html","id":"entries-with-probability-distributions","dir":"Articles","previous_headings":"","what":"Entries with probability distributions","title":"Using {epireview} with {epiparameter}","text":"example load Ebola epidemiological parameters {epireview} package (entries Marburg parametric distributions). subset data just use epidemiological parameter table, select rows containing serial interval. select entry estimated reported Weibull distribution: can now convert object. probability distribution serial interval can utilise methods. illustrate checking parameterised, plotting PDF CDF, generating 10 random numbers sampling distribution.","code":"ebola_data <- load_epidata(\"ebola\") #> ℹ ebola does not have any extracted outbreaks #> information. Outbreaks will be set to NULL. #> Rows: 107 Columns: 2 #> ── Column specification ──────────────────────────────────────────────────────── #> Delimiter: \";\" #> chr (2): parameter_type_short, parameter_type_full #> #> ℹ Use `spec()` to retrieve the full column specification for this data. #> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message. #> ✔ Data loaded for ebola ebola_params <- ebola_data$params ebola_si_rows <- ebola_params[ ebola_params$parameter_type_short == \"serial_interval\", ] ebola_si_rows #> # A tibble: 19 × 78 #> id parameter_data_id covidence_id pathogen parameter_type parameter_value #> #> 1 f49a9… 466f684ff8286fbd… 506 Ebola v… Human delay -… 12 #> 2 c1e68… cb37cc4599953d47… 1471 Ebola v… Human delay -… 19.4 #> 3 08e06… 20eb9e7d7714183c… 1876 Ebola v… Human delay -… 11 #> 4 5a250… 115c169147af31f7… 1891 Ebola v… Human delay -… 11.1 #> 5 54159… 6fca288e3bca7dc0… 3138 Ebola v… Human delay -… 16.1 #> 6 f044b… 89e334ec3622ed27… 3776 Ebola v… Human delay -… 14 #> 7 df908… e62da97ac8648211… 4966 Ebola v… Human delay -… 14.2 #> 8 df908… d46ff8b0c2ff67b7… 4966 Ebola v… Human delay -… 7.1 #> 9 1b9d9… abb8b6aabf43ac86… 5924 Ebola v… Human delay -… 13.7 #> 10 39354… 2b270d400af4fcce… 5939 Ebola v… Human delay -… NA #> 11 39354… 8a18cde4823cf9f7… 5939 Ebola v… Human delay -… NA #> 12 39354… 10f3384f1550a778… 5939 Ebola v… Human delay -… NA #> 13 50dea… 631ec65830a82fbe… 6346 Ebola v… Human delay -… 15.3 #> 14 86e39… 5c8d68c39d1c3b98… 15896 Ebola v… Human delay -… 15.3 #> 15 40a29… 7f4ab651c48511df… 17077 Ebola v… Human delay -… 15.3 #> 16 b76dc… 0c3e02f80addfccc… 17730 Ebola v… Human delay -… 12 #> 17 b76dc… c2e0739d6bc652e9… 17730 Ebola v… Human delay -… 11.7 #> 18 74b62… e2a59f5aa40ddbdf… 18536 Ebola v… Human delay -… 12.3 #> 19 66e1b… 4da557e3c2c22a10… 19083 Ebola v… Human delay -… NA #> # ℹ 72 more variables: exponent , parameter_unit , #> # parameter_lower_bound , parameter_upper_bound , #> # parameter_value_type , parameter_uncertainty_single_value , #> # parameter_uncertainty_singe_type , #> # parameter_uncertainty_lower_value , #> # parameter_uncertainty_upper_value , parameter_uncertainty_type , #> # cfr_ifr_numerator , cfr_ifr_denominator , … ebola_si <- ebola_si_rows[ ebola_si_rows$parameter_data_id == \"0c3e02f80addfccc1017fa619fba76c5\", ] ebola_si #> # A tibble: 1 × 78 #> id parameter_data_id covidence_id pathogen parameter_type parameter_value #> #> 1 b76dcc… 0c3e02f80addfccc… 17730 Ebola v… Human delay -… 12 #> # ℹ 72 more variables: exponent , parameter_unit , #> # parameter_lower_bound , parameter_upper_bound , #> # parameter_value_type , parameter_uncertainty_single_value , #> # parameter_uncertainty_singe_type , #> # parameter_uncertainty_lower_value , #> # parameter_uncertainty_upper_value , parameter_uncertainty_type , #> # cfr_ifr_numerator , cfr_ifr_denominator , … ebola_si_epiparameter <- as_epiparameter(ebola_si) #> Using Marziano (2023). \".\" __. #> To retrieve the citation use the 'get_citation' function #> Warning: Cannot create full citation for epidemiological parameters without bibliographic information #> see ?as_epiparameter for help. ebola_si_epiparameter #> Disease: Ebola Virus Disease #> Pathogen: Ebola virus #> Epi Parameter: human delay serial interval #> Study: Marziano (2023). \".\" __. #> Distribution: weibull (Days) #> Parameters: #> shape: 1.760 #> scale: 10.140 is_parameterised(ebola_si_epiparameter) #> [1] TRUE plot(ebola_si_epiparameter) generate(ebola_si_epiparameter, times = 10) #> [1] 8.1913357 17.4324678 1.4003823 6.3030243 0.9521153 7.7520633 #> [7] 4.8497066 7.3824799 4.6173973 6.4234107"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_from_epireview.html","id":"specifying-the-probability-distribution-if-unknown","dir":"Articles","previous_headings":"","what":"Specifying the probability distribution if unknown","title":"Using {epireview} with {epiparameter}","text":"may instances delay distribution reported literature, either probability distribution fit data, reported probability distribution parameters correspond . Therefore, probability distribution specified {epireview} data. cases, parametric probability distribution required particular epidemiological task assuming probability distribution can useful. Please use feature caution. Assuming incorrect probability distribution applying epidemiological method can lead erroneous results. Additionally, probability distribution specified user overwrite probability distribution specified input data (e.g. {epireview} parameter data) can lead error distribution name supplied parameters input incompatible See ?as_epiparameter details information. Just example load Ebola parameters using epireview::load_epidata() function subset just parameters ($params). use serial interval Ebola reported Faye et al. (2015). stored, two rows {epireview} parameter table, mean standard deviation, probability distribution specified. code chunk subsets Ebola parameter table just return serial interval Faye et al. (2015). supply data as_epiparameter() get unparameterised object probability distribution stated. Given can convert mean standard deviation parameters probability distribution assume distribution form, can supply data as_epiparameter(). uses parameter conversion functions {epiparameter} (see vignette(\"extract_convert\", package = \"epiparameter\")). Ebola serial interval can now used various probability distribution methods.","code":"ebola_data <- load_epidata(\"ebola\") #> ℹ ebola does not have any extracted outbreaks #> information. Outbreaks will be set to NULL. #> Rows: 107 Columns: 2 #> ── Column specification ──────────────────────────────────────────────────────── #> Delimiter: \";\" #> chr (2): parameter_type_short, parameter_type_full #> #> ℹ Use `spec()` to retrieve the full column specification for this data. #> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message. #> ✔ Data loaded for ebola ebola_params <- ebola_data$params ebola_si <- ebola_params[ which( grepl(pattern = \"Faye\", x = ebola_params$article_label, fixed = TRUE) & grepl(pattern = \"serial\", ebola_params$parameter_type, fixed = TRUE) ), ] ebola_si_epiparameter <- as_epiparameter(ebola_si) #> Using Faye (2015). \".\" __. #> To retrieve the citation use the 'get_citation' function #> Warning: Cannot create full citation for epidemiological parameters without bibliographic information #> see ?as_epiparameter for help. #> No adequate summary statistics available to calculate the parameters of the NA distribution #> Unparameterised object ebola_si_epiparameter #> Disease: Ebola Virus Disease #> Pathogen: Ebola virus #> Epi Parameter: human delay serial interval #> Study: Faye (2015). \".\" __. #> Distribution: NA #> Mean: 14.2 [95% CI: 13.1, 15.5] (Days) #> Median: NA [NA% CI: NA, NA] (Days) #> Range: [c(NA, NA)] (Days) is_parameterised(ebola_si_epiparameter) #> [1] FALSE ebola_si_epiparameter <- as_epiparameter(ebola_si, prob_distribution = \"gamma\") #> Using Faye (2015). \".\" __. #> To retrieve the citation use the 'get_citation' function #> Warning: Cannot create full citation for epidemiological parameters without bibliographic information #> see ?as_epiparameter for help. #> Parameterising the probability distribution with the summary statistics. #> Probability distribution is assumed not to be discretised or truncated. ebola_si_epiparameter #> Disease: Ebola Virus Disease #> Pathogen: Ebola virus #> Epi Parameter: human delay serial interval #> Study: Faye (2015). \".\" __. #> Distribution: gamma (Days) #> Parameters: #> shape: 4.000 #> scale: 3.550 is_parameterised(ebola_si_epiparameter) #> [1] TRUE get_parameters(ebola_si_epiparameter) #> shape scale #> 4.00 3.55 density(ebola_si_epiparameter, at = 20) #> [1] 0.03001206 plot(ebola_si_epiparameter) cdf(ebola_si_epiparameter, q = 10) #> [1] 0.3118251 plot(ebola_si_epiparameter, cumulative = TRUE) quantile(ebola_si_epiparameter, p = 0.5) #> [1] 13.03582 generate(ebola_si_epiparameter, times = 10) #> [1] 10.462339 11.714033 16.448346 14.659046 14.979571 21.061653 6.958792 #> [8] 20.288048 15.635075 1.645704"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_from_epireview.html","id":"limitations","dir":"Articles","previous_headings":"","what":"Limitations","title":"Using {epireview} with {epiparameter}","text":"database schema {epireview} evolved time Imperial PERG team extracted pathogens. list parameter types available {epireview} package important differentiate variability sample (e.g. sample standard deviation) uncertainty estimate (e.g. 95% confidence interval credible interval). database version {epireview} Zika, PERG team explicitly expose remove ambiguity extracted data. Please note Marburg, Lassa, Ebola datasets, may ambiguity variability uncertainty. functionality {epiparameter} {epireview} developed improved coming months.","code":""},{"path":[]},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"about-the-package","dir":"Articles","previous_headings":"","what":"About the package","title":"Data Collation and Synthesis Protocol","text":"{epiparameter} R package contains library epidemiological parameter data functions read handle data. delay distributions describe time two events epidemiology, example incubation period, serial interval onset--death; offspring distributions describe number secondary infections primary infection disease transmission. library compiled process collecting, reviewing extracting data peer-reviewed literature1, including research articles, systematic reviews meta-analyses. epiparameter package act ‘living systematic review’ (sensu Elliott et al. (2014)) actively updated maintained provide reliable source data epidemiological distributions. prevent bias collection assessment data, well-defined methodology searching refining required. document aims provide transparency methodology used epiparameter maintainers outlining steps taken stage data handling. can also serve guide contributors wanting search provide epidemiological parameters currently missing library. protocol also facilitate reproducibility searches, results appraisal steps. large body work methods best conduct literature searches data collection part systematic reviews meta-analyses2, use basis protocol. sources : Cochrane Handbook (Higgins et al. 2022) PRISMA (Page et al. 2021)","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"objective-of-epiparameter","dir":"Articles","previous_headings":"","what":"Objective of {epiparameter}","title":"Data Collation and Synthesis Protocol","text":"defined PRISMA guidelines, clearly stated objective helps refine goal project. epiparameter’s objective provide information collection distributions range infectious diseases accurate, unbiased comprehensive possible. distributions enable outbreak analysts easily access distributions routine analysis. example, delay distributions necessary : calculating case fatality rates adjusting delay outcome, quantifying implications different screening measures quarantine periods, estimating reproduction numbers, scenario modelling using transmission dynamic models.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"contributing-to-the-package","dir":"Articles","previous_headings":"","what":"Contributing to the package","title":"Data Collation and Synthesis Protocol","text":"contribute epiparameter library epidemiological parameter information, added data google sheet. integrated epiparameter library package maintainers, information accessible epiparameter package users.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"scope-of-package","dir":"Articles","previous_headings":"","what":"Scope of package","title":"Data Collation and Synthesis Protocol","text":"epiparameter package spans range infectious diseases, including several distributions disease available. pathogens diseases currently systematically searched included package library : distributions currently included literature search pathogen/disease :","code":"#> Returning 125 results that match the criteria (100 are parameterised). #> Use subset to filter by entry variables or single_epiparameter to return a single entry. #> To retrieve the citation for each use the 'get_citation' function #> Returning 125 results that match the criteria (100 are parameterised). #> Use subset to filter by entry variables or single_epiparameter to return a single entry. #> To retrieve the citation for each use the 'get_citation' function"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"guide-to-identifying-distributions-in-the-literature","dir":"Articles","previous_headings":"","what":"Guide to identifying distributions in the literature","title":"Data Collation and Synthesis Protocol","text":"Key word searches: searching literature, use specific search phrases ensure correct literature procured required. use search schema includes searching pathogen disease, desired distribution. search phrase can optionally include specific variant/strain/subtype. search constrained based year publication. Examples searches: “SARS-CoV-2 incubation period” “ebola serial interval” “influenza H7N9 onset admission” However, simple search phrases can return large number irrelevant papers. Using specific search schema depending search engine used. example, using Google Scholar schema like: (“Middle East Respiratory Syndrome” MERS) “onset death” (estimation inference calculation) (ebola EVD) “onset death” (estimation inference calculation) Web Science used: (“Middle East Respiratory Syndrome” MERS) “onset death” estimat* (ebola EVD) “onset death” estimat* refine results suitable set literature. Literature search engines: using selection search engines prevent one source potentially omitting papers. Suggested search sites : Google Scholar, Web Science, PubMed, Scopus. Adding papers: addition database entries papers identified literature search, entries can supplemented recommendations (.e. community) cited paper literature search. Papers may recommended experts research public health communities. plan use two methods community engagement. Firstly open-access Google sheet allows people add distribution data reviewed one epiparameter maintainers incorporated meets quality checks. second method - yet implemented - involves community members uploading data zenodo, can read loaded R using epiparameter checked. Language restrictions: papers English Spanish currently supported epiparameter. Papers written another language verified expert can also included database. However, evaluated review process described result flagged user loaded epiparameter.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"guide-to-data-refinement-once-sources-identified","dir":"Articles","previous_headings":"","what":"Guide to data refinement once sources identified","title":"Data Collation and Synthesis Protocol","text":"Removing duplicates: library parameters contain duplicates studies, multiple entries per study can included paper reports multiple results (e.g. full data set subset data). Studies use data, subsets supersets data used papers library included. Abstract methods screening: number unique sources identified, reviewed suitability reviewing abstract searching words phrases paper indicate reports parameters summary statistics distribution, can include searching methods section words types distributions (e.g. lognormal), fitting procedures (e.g. maximum likelihood bayesian), searching results parameter estimates. epiparameter library includes entries parameters summary statistics reported distribution specified, entries distribution specified parameters reported. database unsuitable papers kept remind maintainers papers included aids updating database (see ) preventing redundant reviewing previously rejected paper. Stopping criteria: many searches, number results far larger reasonably evaluated outside full systematic review. refining papers contain required information (abstract methods screening), around 10 papers per pathogen screened search (per search round, see updating section details). number papers pass abstract methods screening fewer 10, suitable papers reviewed. Full paper screening: abstract methods screening, papers excluded reviewed full verify indeed contain required information distribution parameters information methodology used. acceptable include secondary source contains information delay distribution primary source unavailable report distribution. inference delay distribution primary subject research article, example inferred used estimation R0R_0 can still included database. Additionally, distribution parameters based illustrative values use simulations - rather inferred data - considered unsuitable excluded. , papers excluded stage recorded database unsuitable sources reasoning prevent reassess updating database. Post hoc removal: epiparameter parameters later identified inappropriate can removed database. cases unlikely limitations can appended onto data entries make users aware limitations (e.g. around assumptions used infer distribution), extreme cases data completely removed database. Note: systematic reviews focusing effect sizes can subject publication bias (e.g. positive significant results literature). However, distribution inference focus significance testing effect sizes, bias considered collection process.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"guide-to-extracting-parameters","dir":"Articles","previous_headings":"","what":"Guide to extracting parameters","title":"Data Collation and Synthesis Protocol","text":"Extracting parameters: underlying distributions (e.g. gamma, lognormal), parameters (e.g. shape/scale, meanlog/sdlog), summary statistics (e.g. mean, standard deviation, median, range quantiles) given paper, values recorded verbatim paper database. read R using epiparameter package, aspects distribution automatically calculated available. example mean standard deviation gamma distribution reported serial interval values stored database. R, shape scale parameters gamma distribution automatically reconstructed resulting distribution available use. epiparameter library exactly reflects literature. mean information present paper imputed prior knowledge (e.g. vector disease known stated), performing calculating reported values. prevents issue clear provenance data library. requirements entry database defined data dictionary. outline minimal dataset required included epiparameter library : Name disease Type distribution Citation information (author(s) paper, year publication, publication title journal, DOI) Whether distribution extrinsic (e.g. extrinsic incubation period). disease vector-borne NA. Whether distribution fitted discretised, boolean (true false). information database entry non-essential. See data dictionary included epiparameter database fields description range possible values field can take.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"data-quality-assessment-in-epiparameter","dir":"Articles","previous_headings":"","what":"Data quality assessment in {epiparameter}","title":"Data Collation and Synthesis Protocol","text":"inference parameters delay distribution often requires methodological adjustments correct factors otherwise bias estimates. includes accounting interval-censoring data timing event (e.g. exposure pathogen) know certainty, rather within time window. adjusting phase bias distribution estimated growing shrinking stage epidemic. aim epiparameter make judgement parameters ‘better’ others, notify warn user potential limitations data. aspects assessed : 1) whether method includes single double interval-censoring exposure onset times known certainty (.e. single day); 2) method adjust phase bias outbreak ascending descending phase. indicated boolean values indicate whether reported paper users recommended refer back paper determine whether estimates biased.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"guide-to-the-epiparameter-review-process","dir":"Articles","previous_headings":"","what":"Guide to the {epiparameter} review process","title":"Data Collation and Synthesis Protocol","text":"set parameters included database must pass abstract methods screening full screening subsequently review one epiparameter maintainers. process involves running diagnostic checks cross-referencing reported parameters paper ensure match exactly results plot PDF/CDF/PMF matches anything plotted paper, available. prevents possible misinterpretation (e.g. serial interval incubation period). check also includes making sure unique identifiers paper match author’s name, publication year data recorded database.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"updating-parameters-in-the-database","dir":"Articles","previous_headings":"","what":"Updating parameters in the database","title":"Data Collation and Synthesis Protocol","text":"search review stages time consuming continuously carried , aim keep epiparameter library --date living data library conducting regular searches (.e. every 3-4 months) fill missing papers new publication since last search. epidemiological literature can expand rapidly, especially new outbreak. Therefore can optionally include new studies use epidemiological community regular updates. small additions still subject data quality assessment diagnostics ensure accuracy, likely picked subsequent literature searches. likely existing pathogens major increase incidence since last update new papers reporting delay distributions. cases papers previously reviewed due limited reviewing time round updates now checked. particularly value community contributions database, everyone can benefit analysis already conducted, duplicated effort reduced.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/data_protocol.html","id":"database-of-excluded-papers","dir":"Articles","previous_headings":"","what":"Database of excluded papers","title":"Data Collation and Synthesis Protocol","text":"papers returned search results suitable, either stage abstract screening, reviewing entirety paper, recorded database following information: First author’s last name Unique identifier, ideally DOI Journal, pre-print server, host website One several reasons deemed unsuitable Date recording","code":""},{"path":[]},{"path":"https://epiverse-trace.github.io/epiparameter/articles/design_principles.html","id":"scope","dir":"Articles","previous_headings":"","what":"Scope","title":"Design Principles for {epiparameter}","text":"{epiparameter} R package library epidemiological parameters, provides class (.e. data structure) helper functions working epidemiological parameters distributions. class main functional object working epidemiological parameters can hold information delay distributions (e.g. incubation period, serial interval, onset--death distribution) offspring distributions. class number methods, including allowing user easily calculate PDF, CDF, quantile, generate random numbers, calculate distribution mean, plot distribution. object can created constructor function epiparameter(), uncertain whether object , can validated assert_epiparameter(). package also converts distribution parameters summary statistics, vice versa. achieved either conversion extraction methods functions used explained Parameter extraction conversion {epiparameter} vignette.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/design_principles.html","id":"output","dir":"Articles","previous_headings":"","what":"Output","title":"Design Principles for {epiparameter}","text":"output epiparameter() constructor function object. list nine elements, element either single type (e.g. character), non-nested list another class. Classes elements used existing well developed infrastructure handling certain data types. $prod_dist element uses distribution class – parameterised distribution available – using either class {distributional} class {distcrete}. $citation handled using class {utils} package (included part base R recommended packages). functions return simplest type possible, may atomic vector (including single element vectors), un-nested lists.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/design_principles.html","id":"package-architecture","dir":"Articles","previous_headings":"","what":"Package architecture","title":"Design Principles for {epiparameter}","text":"Much {epiparameter} package centred around class. diagram showing class ’s S3 methods (diagram interactive can adjusted labels overlapping).","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/design_principles.html","id":"design-decisions","dir":"Articles","previous_headings":"","what":"Design decisions","title":"Design Principles for {epiparameter}","text":" class designed core unit working epidemiological parameters. designed parallel epidemiological data structures class {contactmatrix} R package. design principles class aligned design principles. include: new_*() constructor assert_() test_() is_() checker determine object given class (without checking validity class) Coercion generic as_(). conversion functions (convert_*) S3 generic functions methods provided {epiparameter} character input. follows design pattern packages, {dplyr}, export key data transformation functions S3 generics allow developers extend conversions data objects. conversion functions designed single function exported user summary statistics parameters, another function exported parameters summary statistics. functions use switch() dispatch internal conversion functions. provides minimal number conversion functions package namespace compared exporting conversion function every distribution. large number entries returned reading epidemiological parameters library using epiparameter_db() function, can flood console, due default list printing R. reasoning object minimal class enable cleaner descriptive printing large list objects. print.multi_epiparameter() prints header metadata number objects number diseases epidemiological distributions list. also lists diseases epidemiological parameters returned. footer print() function states number objects shown, guides use print(n = ...) parameter_tbl() link online database vignette (database.Rmd). Information header footer considered metadata advice prefixed #. package uses S3 classes S3 dispatch exported functions, switch() .call() dispatching internal functions. easier develop debug internal functions use S3 dispatch avoids ensure S3 methods registered. Examples S3 dispatch exported functions get_parameters() convert_summary_stats_to_params(). Examples internal dispatch using switch() .call() clean_params() convert_params_to_summary_stats.character(). function naming convention internal functions dot (.) prefix (e.g. .convert_params_lnorm()). function breaks convention new_epiparameter() advanced users package may want call internal low-level constructor, adding dot prefix function may make harder users find.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/design_principles.html","id":"dependencies","dir":"Articles","previous_headings":"","what":"Dependencies","title":"Design Principles for {epiparameter}","text":"aim restrict number dependencies minimal required set ease maintenance. current hard dependencies : {checkmate} {distributional} {distcrete} {stats} {utils} {stats} {utils} distributed R language viewed lightweight dependencies, already installed user’s machine R. {checkmate} input checking package widely used across Epiverse-TRACE packages. {distributional} {distcrete} used import S3 classes handling working distributions. required {distcrete} can handle discretised distributions. Currently {epiparameter} deviates Epiverse policy number previous R versions supports. {epiparameter} package requires R version >= 4.1.0 includes current version last three minor R versions rather policy four minor versions, September 2024. reasons change enable usage base R pipe (|>).","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/design_principles.html","id":"contribute","dir":"Articles","previous_headings":"","what":"Contribute","title":"Design Principles for {epiparameter}","text":"addition package contributing guide, please refer {epiparameter} specific contributing guidelines adding epidemiological parameter package library.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/epiparameter.html","id":"use-case","dir":"Articles","previous_headings":"","what":"Use case","title":"Getting Started with {epiparameter}","text":"outbreak known potentially novel pathogen detected key parameters delay distributions (e.g. incubation period serial interval) required interpret early data. {epiparameter} can provide distributions selection published sources, past analysis similar pathogen, order provide relevant epidemiological parameters new analysis.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/epiparameter.html","id":"library-of-epidemiological-parameters","dir":"Articles","previous_headings":"","what":"Library of epidemiological parameters","title":"Getting Started with {epiparameter}","text":"First, introduce library, database, epidemiological parameters available {epiparameter}. library stored internally can read R using epiparameter_db() function. default entries library returned. output list objects, element list corresponds entry parameter database. see full list diseases distributions stored library use parameter_tbl() function. show first six rows output. parameter_tbl() can also subset database supplied function. details data collation library parameters can found Data Collation Synthesis Protocol vignette.","code":"db <- epiparameter_db() #> Returning 125 results that match the criteria (100 are parameterised). #> Use subset to filter by entry variables or single_epiparameter to return a single entry. #> To retrieve the citation for each use the 'get_citation' function db #> # List of 125 objects #> Number of diseases: 23 #> ❯ Adenovirus ❯ Chikungunya ❯ COVID-19 ❯ Dengue ❯ Ebola Virus Disease ❯ Hantavirus Pulmonary Syndrome ❯ Human Coronavirus ❯ Influenza ❯ Japanese Encephalitis ❯ Marburg Virus Disease ❯ Measles ❯ MERS ❯ Mpox ❯ Parainfluenza ❯ Pneumonic Plague ❯ Rhinovirus ❯ Rift Valley Fever ❯ RSV ❯ SARS ❯ Smallpox ❯ West Nile Fever ❯ Yellow Fever ❯ Zika Virus Disease #> Number of epi parameters: 13 #> ❯ case fatality risk ❯ generation time ❯ hospitalisation to death ❯ hospitalisation to discharge ❯ incubation period ❯ notification to death ❯ notification to discharge ❯ offspring distribution ❯ onset to death ❯ onset to discharge ❯ onset to hospitalisation ❯ onset to ventilation ❯ serial interval #> [[1]] #> Disease: Adenovirus #> Pathogen: Adenovirus #> Epi Parameter: incubation period #> Study: Lessler J, Reich N, Brookmeyer R, Perl T, Nelson K, Cummings D (2009). #> \"Incubation periods of acute respiratory viral infections: a systematic #> review.\" _The Lancet Infectious Diseases_. #> doi:10.1016/S1473-3099(09)70069-6 #> . #> Distribution: lnorm (days) #> Parameters: #> meanlog: 1.723 #> sdlog: 0.231 #> #> [[2]] #> Disease: Human Coronavirus #> Pathogen: Human_Cov #> Epi Parameter: incubation period #> Study: Lessler J, Reich N, Brookmeyer R, Perl T, Nelson K, Cummings D (2009). #> \"Incubation periods of acute respiratory viral infections: a systematic #> review.\" _The Lancet Infectious Diseases_. #> doi:10.1016/S1473-3099(09)70069-7 #> . #> Distribution: lnorm (days) #> Parameters: #> meanlog: 1.163 #> sdlog: 0.140 #> #> [[3]] #> Disease: SARS #> Pathogen: SARS-Cov-1 #> Epi Parameter: incubation period #> Study: Lessler J, Reich N, Brookmeyer R, Perl T, Nelson K, Cummings D (2009). #> \"Incubation periods of acute respiratory viral infections: a systematic #> review.\" _The Lancet Infectious Diseases_. #> doi:10.1016/S1473-3099(09)70069-8 #> . #> Distribution: lnorm (days) #> Parameters: #> meanlog: 1.386 #> sdlog: 0.593 #> #> # ℹ 122 more elements #> # ℹ Use `print(n = ...)` to see more elements. #> # ℹ Use `parameter_tbl()` to see a summary table of the parameters. #> # ℹ Explore database online at: https://epiverse-trace.github.io/epiparameter/articles/database.html parameter_tbl(multi_epiparameter = db) #> # Parameter table: #> # A data frame: 125 × 7 #> disease pathogen epi_name prob_distribution author year sample_size #> #> 1 Adenovirus Adenovi… incubat… lnorm Lessl… 2009 14 #> 2 Human Coronavir… Human_C… incubat… lnorm Lessl… 2009 13 #> 3 SARS SARS-Co… incubat… lnorm Lessl… 2009 157 #> 4 Influenza Influen… incubat… lnorm Lessl… 2009 151 #> 5 Influenza Influen… incubat… lnorm Lessl… 2009 90 #> 6 Influenza Influen… incubat… lnorm Lessl… 2009 78 #> 7 Measles Measles… incubat… lnorm Lessl… 2009 55 #> 8 Parainfluenza Parainf… incubat… lnorm Lessl… 2009 11 #> 9 RSV RSV incubat… lnorm Lessl… 2009 24 #> 10 Rhinovirus Rhinovi… incubat… lnorm Lessl… 2009 28 #> # ℹ 115 more rows parameter_tbl(multi_epiparameter = db, disease = \"Ebola\") #> # Parameter table: #> # A data frame: 17 × 7 #> disease pathogen epi_name prob_distribution author year sample_size #> #> 1 Ebola Virus Dis… Ebola V… offspri… nbinom Lloyd… 2005 13 #> 2 Ebola Virus Dis… Ebola V… incubat… lnorm Eichn… 2011 196 #> 3 Ebola Virus Dis… Ebola V… onset t… gamma The E… 2018 14 #> 4 Ebola Virus Dis… Ebola V… incubat… gamma WHO E… 2015 1798 #> 5 Ebola Virus Dis… Ebola V… incubat… gamma WHO E… 2015 49 #> 6 Ebola Virus Dis… Ebola V… incubat… gamma WHO E… 2015 957 #> 7 Ebola Virus Dis… Ebola V… incubat… gamma WHO E… 2015 792 #> 8 Ebola Virus Dis… Ebola V… serial … gamma WHO E… 2015 305 #> 9 Ebola Virus Dis… Ebola V… serial … gamma WHO E… 2015 37 #> 10 Ebola Virus Dis… Ebola V… serial … gamma WHO E… 2015 147 #> 11 Ebola Virus Dis… Ebola V… serial … gamma WHO E… 2015 112 #> 12 Ebola Virus Dis… Ebola V… hospita… gamma WHO E… 2015 1167 #> 13 Ebola Virus Dis… Ebola V… hospita… gamma WHO E… 2015 1004 #> 14 Ebola Virus Dis… Ebola V… notific… gamma WHO E… 2015 2536 #> 15 Ebola Virus Dis… Ebola V… notific… gamma WHO E… 2015 1324 #> 16 Ebola Virus Dis… Ebola V… onset t… gamma WHO E… 2015 2741 #> 17 Ebola Virus Dis… Ebola V… onset t… gamma WHO E… 2015 1335"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/epiparameter.html","id":"single-set-of-epidemiological-parameters","dir":"Articles","previous_headings":"","what":"Single set of epidemiological parameters","title":"Getting Started with {epiparameter}","text":"{epiparameter} introduces new class working epidemiological parameters R: , contains name disease, name epidemiological distribution, parameters (available) citation information parameter source, well information. core data structure {epiparameter} package holds single set epidemiological parameters. object can : Pulled database (epiparameter_db()) Created manually (using class constructor function: epiparameter()) arguments specified example using class constructor (epiparameter()) , example metadata parameter uncertainty (uncertainty) provided. See help documentation epiparameter() function using ?epiparameter see argument. Also see documentation helper functions, e.g., ?create_citation(). Manually creating objects can especially useful new parameter estimates become available yet incorporated {epiparameter} library. seen examples vignette, class custom printing method shows disease, pathogen (known), epidemiological distribution, citation study parameters probability distribution parameter distribution (available).","code":"# from database # fetch for COVID-19 incubation period from database # return only a single covid_incubation <- epiparameter_db( disease = \"COVID-19\", epi_name = \"incubation period\", single_epiparameter = TRUE ) #> Using Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan #> B, Kinoshita R, Nishiura H (2020). \"Incubation Period and Other #> Epidemiological Characteristics of 2019 Novel Coronavirus Infections #> with Right Truncation: A Statistical Analysis of Publicly Available #> Case Data.\" _Journal of Clinical Medicine_. doi:10.3390/jcm9020538 #> .. #> To retrieve the citation use the 'get_citation' function covid_incubation #> Disease: COVID-19 #> Pathogen: SARS-CoV-2 #> Epi Parameter: incubation period #> Study: Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan #> B, Kinoshita R, Nishiura H (2020). \"Incubation Period and Other #> Epidemiological Characteristics of 2019 Novel Coronavirus Infections #> with Right Truncation: A Statistical Analysis of Publicly Available #> Case Data.\" _Journal of Clinical Medicine_. doi:10.3390/jcm9020538 #> . #> Distribution: lnorm (days) #> Parameters: #> meanlog: 1.525 #> sdlog: 0.629 # using constructor function covid_incubation <- epiparameter( disease = \"COVID-19\", pathogen = \"SARS-CoV-2\", epi_name = \"incubation period\", prob_distribution = create_prob_distribution( prob_distribution = \"gamma\", prob_distribution_params = c(shape = 2, scale = 1) ), summary_stats = create_summary_stats(mean = 2), citation = create_citation( author = person( given = list(\"John\", \"Amy\"), family = list(\"Smith\", \"Jones\") ), year = 2022, title = \"COVID Incubation Period\", journal = \"Epi Journal\", doi = \"10.27861182.x\" ) ) #> Using Smith J, Jones A (2022). \"COVID Incubation Period.\" _Epi Journal_. #> doi:10.27861182.x . #> To retrieve the citation use the 'get_citation' function covid_incubation #> Disease: COVID-19 #> Pathogen: SARS-CoV-2 #> Epi Parameter: incubation period #> Study: Smith J, Jones A (2022). \"COVID Incubation Period.\" _Epi Journal_. #> doi:10.27861182.x . #> Distribution: gamma (NA) #> Parameters: #> shape: 2.000 #> scale: 1.000"},{"path":"https://epiverse-trace.github.io/epiparameter/articles/epiparameter.html","id":"benefit-of-epiparameter","dir":"Articles","previous_headings":"","what":"Benefit of ","title":"Getting Started with {epiparameter}","text":"providing consistent robust object store epidemiological parameters, objects can applied epidemiological pipelines, example {episoap}. data contained within object (e.g. parameter values, pathogen type, etc.) can modified pipeline continue operate class unchanged.","code":""},{"path":"https://epiverse-trace.github.io/epiparameter/articles/epiparameter.html","id":"subsetting-database","dir":"Articles","previous_headings":"","what":"Subsetting database","title":"Getting Started with {epiparameter}","text":"database can subset directly epiparameter_db(). results can subset author. recommended use family name first author instead full name. first author matched entry source multiple authors. results can subset using subset argument, example subset = sample_size > 100 return entries sample size greater 100. See ?epiparameter_db() details use argument subset database entries get returned. single required single_epiparameter argument can set TRUE return single set epidemiological parameters (.e. one delay distribution), available. multiple entries parameter library match search criteria (e.g. disease type) entries parameterised (.e. distribution parameters known), account right truncation inferred, estimated largest sample size preferentially selected (order).","code":"epiparameter_db( disease = \"COVID-19\", epi_name = \"incubation period\", author = \"Linton\" ) #> Returning 3 results that match the criteria (3 are parameterised). #> Use subset to filter by entry variables or single_epiparameter to return a single entry. #> To retrieve the citation for each use the 'get_citation' function #> # List of 3 objects #> Number of diseases: 1 #> ❯ COVID-19 #> Number of epi parameters: 1 #> ❯ incubation period #> [[1]] #> Disease: COVID-19 #> Pathogen: SARS-CoV-2 #> Epi Parameter: incubation period #> Study: Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan #> B, Kinoshita R, Nishiura H (2020). \"Incubation Period and Other #> Epidemiological Characteristics of 2019 Novel Coronavirus Infections #> with Right Truncation: A Statistical Analysis of Publicly Available #> Case Data.\" _Journal of Clinical Medicine_. doi:10.3390/jcm9020538 #> . #> Distribution: lnorm (days) #> Parameters: #> meanlog: 1.456 #> sdlog: 0.555 #> #> [[2]] #> Disease: COVID-19 #> Pathogen: SARS-CoV-2 #> Epi Parameter: incubation period #> Study: Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan #> B, Kinoshita R, Nishiura H (2020). \"Incubation Period and Other #> Epidemiological Characteristics of 2019 Novel Coronavirus Infections #> with Right Truncation: A Statistical Analysis of Publicly Available #> Case Data.\" _Journal of Clinical Medicine_. doi:10.3390/jcm9020538 #> . #> Distribution: lnorm (days) #> Parameters: #> meanlog: 1.611 #> sdlog: 0.472 #> #> [[3]] #> Disease: COVID-19 #> Pathogen: SARS-CoV-2 #> Epi Parameter: incubation period #> Study: Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan #> B, Kinoshita R, Nishiura H (2020). \"Incubation Period and Other #> Epidemiological Characteristics of 2019 Novel Coronavirus Infections #> with Right Truncation: A Statistical Analysis of Publicly Available #> Case Data.\" _Journal of Clinical Medicine_. doi:10.3390/jcm9020538 #>