-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
351 lines (300 loc) · 13.1 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
"""
# @author qumu
# @date 2023/8/15
# @module hf_inference.py
"""
import argparse
import json
import logging
import os
import sqlite3
import sys
import traceback
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
LlamaForCausalLM,
StoppingCriteria,
)
from peft import PeftModel
from utils.extract_sql_meta import isConstCanFind, convert_schema, fetch_column_all_value, is_number
MODEL_TYPES = {
"llama": LlamaForCausalLM,
}
TOKENIZERS = {
"llama": LlamaTokenizer,
}
SYSTEM_ROLE_START_TAG = "<s>system\n"
HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"
SYSTEM = 'You are a professional SQL engineer and you are writing SQL queries for data query tasks.\n'
class EotOrPadStopping(StoppingCriteria):
"""
Args:
start_length (:obj:`int`):
The number of initial tokens.
"""
def __init__(self, stop_token_id, pad_token_id):
self.stop_token_id = stop_token_id
self.pad_token_id = pad_token_id
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
return torch.logical_or(input_ids[:, -1] == self.stop_token_id,
input_ids[:, -1] == self.pad_token_id).all().item()
def load_model_tokenizer(path, model_type=None, peft_path=None, quantization=None, torch_dtype=torch.bfloat16, eos_token=None, pad_token=None, batch_size=1):
"""
load model and tokenizer by transfromers
"""
if model_type:
ModelClass = MODEL_TYPES.get(model_type, AutoModelForCausalLM)
else:
ModelClass = AutoModelForCausalLM
TokenizerClass = TOKENIZERS.get(model_type, AutoTokenizer)
print(f"Tokenizer Class: {TokenizerClass}, Model Class: {ModelClass}")
config, unused_kwargs = AutoConfig.from_pretrained(
path,
use_flash_attn=batch_size==1,
use_xformers=batch_size==1,
trust_remote_code=True,
return_unused_kwargs=True)
config_dict = config.to_dict()
tokenizer = TokenizerClass.from_pretrained(path, trust_remote_code=True, use_fast=False, legacy=False)
if eos_token:
print("input eos_token: ", eos_token)
try:
tokenizer.eos_token = eos_token
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(eos_token)
except:
print(tokenizer.eos_token, tokenizer.eos_token_id)
elif "eos_token_id" in config_dict:
tokenizer.eos_token = tokenizer.convert_ids_to_tokens(config.eos_token_id)
tokenizer.eos_token_id = config.eos_token_id
elif "eos_token" in config_dict:
print(config.eos_token)
tokenizer.eos_token = config.eos_token
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(config.eos_token)
if pad_token:
print("input pad_token: ", pad_token)
try:
tokenizer.pad_token = pad_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(pad_token)
except:
print(tokenizer.pad_token, tokenizer.pad_token_id)
elif "pad_token_id" in config_dict:
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(config.pad_token_id)
tokenizer.pad_token_id = config.pad_token_id
elif "pad_token" in config_dict:
print(config.eos_token)
tokenizer.pad_token = config.pad_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(config.pad_token)
tokenizer.padding_side = "left"
print(f"tokenizer's eos_token: {tokenizer.eos_token}, pad_token: {tokenizer.pad_token}")
print(f"tokenizer's eos_token_id: {tokenizer.eos_token_id}, pad_token_id: {tokenizer.pad_token_id}")
print(tokenizer)
base_model = ModelClass.from_pretrained(
path,
config=config,
load_in_8bit=(quantization=='8bit'),
load_in_4bit=(quantization=='4bit'),
device_map="auto",
torch_dtype=torch_dtype,
trust_remote_code=True,
# use_safetensors=False,
)
if peft_path:
print("Loading PEFT MODEL...")
model = PeftModel.from_pretrained(base_model, peft_path, torch_dtype=torch_dtype)
else:
print("Loading Original MODEL...")
model = base_model
model.eval()
print("=======================================MODEL Configs=====================================")
print(model.config)
print("=========================================================================================")
print("=======================================MODEL Archetecture================================")
print(model)
print("=========================================================================================")
return model, tokenizer
def hf_inference(model, tokenizer, text_list, max_new_tokens=512, do_sample=True, **kwargs):
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
logging.info("================================Prompts and Generations=============================")
outputs = model.generate(
inputs=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=max_new_tokens,
do_sample=do_sample,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
**kwargs
)
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
for i in range(len(text_list)):
logging.info('=========' * 10)
logging.info(f'Prompt:\n{text_list[i]}')
gen_text[i] = gen_text[i].replace(tokenizer.pad_token, '')
logging.info(f'Generation:\n{gen_text[i]}')
sys.stdout.flush()
return gen_text
def div_list(ls, n):
ls_len = len(ls)
if n <= 0 or 0 == ls_len:
return []
if n > ls_len:
return []
elif n == ls_len:
return [[i] for i in ls]
else:
j = int(ls_len / n)
ls_return = []
for i in range(0, (n - 1) * j, j):
ls_return.append(ls[i:i + j])
ls_return.append(ls[(n - 1) * j:])
return ls_return
def load_test_data(valid_dataset_path):
content_list, database_list = [], []
eval_datas = []
if valid_dataset_path.endswith(".jsonl"):
with open(valid_dataset_path) as f:
for line in f:
eval_datas.append(json.loads(line))
else:
with open(valid_dataset_path) as f:
eval_datas = json.load(f)
for eval_data in eval_datas:
content = eval_data['chat_rounds'][1]['content']
database = eval_data['db_id']
if not content.endswith("\n"):
content += "\n"
content_list.append(content)
database_list.append(database)
return content_list, database_list
def isValidSQL(sql, db_list):
for db in db_list:
conn = sqlite3.connect(db)
cursor = conn.cursor()
try:
cursor.execute(sql)
except Exception as e:
return e
return None
def second_round_prompt_check_error(sql, e):
return "An ERROR in the SQL. You must fix it." \
f"\n ERROR : {str(e)}" \
f"\n SQL : {str(sql)}"
def second_round_check(content, db_list, predict_sql):
e = isValidSQL(predict_sql, db_list)
second_prompt = None
if e is not None:
second_prompt = second_round_prompt_check_error(predict_sql, e)
else:
tables, _ = convert_schema(content)
may_be_used_column = isConstCanFind(predict_sql, db_list, tables)
if len(may_be_used_column) != 0:
second_prompt = second_round_prompt_check_constrain(predict_sql, may_be_used_column, db_list)
return second_prompt
def is_same_value(database_value, compare_value):
database_value = database_value.strip()
if database_value.lower() == compare_value.lower():
return True
if is_abbreviation(database_value, compare_value):
return True
if is_abbreviation(compare_value, database_value):
return True
return False
def is_abbreviation(word, abbreviation):
i, j = 0, 0
word, abbreviation = word.lower(), abbreviation.lower()
while i < len(word) and j < len(abbreviation):
if word[i] == abbreviation[j]:
i += 1
j += 1
elif abbreviation[j].isdigit() and abbreviation[j] != "0":
count = 0
while j < len(abbreviation) and abbreviation[j].isdigit():
count = count * 10 + int(abbreviation[j])
j += 1
i += count
else:
i += 1
return j == len(abbreviation)
def second_round_prompt_check_constrain(sql, may_be_other_fields, db_list):
prompt_str_list = []
for may_be_other_field in may_be_other_fields:
table = may_be_other_field["table"]
column = may_be_other_field["not_right_column"]
compare_type = may_be_other_field["compare_type"]
compare_value = str(may_be_other_field["compare_value"])
may_in_columns = may_be_other_field["may_in_columns"]
if len(may_in_columns) == 0:
if is_number(compare_value):
continue
column_values = fetch_column_all_value(column, db_list, table)
abbreviation_value = ""
for value in column_values:
if is_number(value):
continue
if is_same_value(compare_value, value):
abbreviation_value = value
if abbreviation_value != "":
prompt_str = f"The variable \"{compare_value}\" has a case error. It should be written as \"{abbreviation_value}\"" \
f"\nPlease confirm that SQL have used the correct constants and Return the SQL after check!" \
f"\nSQL: {sql}" \
f"\nShould Use Value: {abbreviation_value}"
prompt_str_list.append(prompt_str)
else:
prompt_str = f"No value in column {column} of table {table} {compare_type} {compare_value}," \
f"\nBut, there are values in columns {','.join(may_in_columns)} of table {table}" \
f"\nPlease make sure you are using the correct columns in SQL !" \
f"\nSQL : {sql}" \
f"\nNo Value Compare: {table}.{column} {compare_type} {compare_value}" \
f"""\nValue Exists Compare: {','.join([table + "." + c + " " + compare_type + " " + compare_value
for c in may_in_columns])}"""
prompt_str_list.append(prompt_str)
if len(prompt_str_list) == 0:
return None
return '\n'.join(prompt_str_list)
def start_inference(base_model_path, peft_path, valid_file_path, db_dir):
content_list, database_list = load_test_data(valid_file_path)
model, tokenizer = load_model_tokenizer(base_model_path, peft_path= peft_path, model_type='deepseek',
eos_token='<|end▁of▁sentence|>', pad_token='<|end▁of▁sentence|>')
cnt, err = 0, 0
predict_result = []
for content, database in zip(content_list, database_list):
cnt += 1
try:
prompt = f"{SYSTEM_ROLE_START_TAG}{SYSTEM}{HUMAN_ROLE_START_TAG}{content}{BOT_ROLE_START_TAG}"
predict_res = hf_inference(model, tokenizer, [prompt], do_sample=False, num_beams=1,
num_return_sequences=1)
curr_predict = predict_res[0].split('\n')[0]
db_list = [os.path.join(db_dir, database, database + ".sqlite")]
second_prompt = second_round_check(content, db_list, curr_predict)
if second_prompt is not None:
prompt = [
f"{SYSTEM_ROLE_START_TAG}{SYSTEM}{HUMAN_ROLE_START_TAG}{content}{BOT_ROLE_START_TAG}"
f"{curr_predict}{HUMAN_ROLE_START_TAG}{second_prompt}{BOT_ROLE_START_TAG}"]
second_predict_res = hf_inference(model, tokenizer, prompt, do_sample=False,
num_beams=1,
num_return_sequences=1)
curr_predict = second_predict_res[0].split('\n')[0]
predict_result.append(curr_predict)
except Exception as e:
logging.error(f'error: {e}')
logging.error(traceback.format_exc())
err += 1
return predict_result
def main(opt):
predict_result = start_inference(opt.model_path,opt.peft_path, opt.eval_file, opt.base_dir)
with open(opt.output, 'w') as f:
f.write("\n".join(predict_result))
f.flush()
if __name__ == "__main__":
parser_arg = argparse.ArgumentParser("")
parser_arg.add_argument('--model_path', type=str, default="deepseek")
parser_arg.add_argument('--eval_file', type=str, default="./data/preprocessed_data/resdsql_dev.json")
parser_arg.add_argument('--base_dir', type=str, default="./data/preprocessed_data/spider/database")
parser_arg.add_argument('--output', type=str, default="./predict_result/sqlgpt.sql")
parser_arg.add_argument('--peft_path', type=str, default=None)
opt = parser_arg.parse_args()
main(opt)