-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMIBCI-QCNN-tb-template.txt
329 lines (262 loc) · 11.1 KB
/
MIBCI-QCNN-tb-template.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright (C) 2021 Daniel Eneriz Orta
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <iostream>
#include <fstream>
#include <cstring>
#include <string>
#include <bitset>
#include <stdexcept>
#include <typeinfo>
#include "MIBCI-QCNN.h"
/*----------------------------------------------------------------------------
--------------------------HELPFUL FUNCTIONS-----------------------------------
----------------------------------------------------------------------------*/
float TextStringToDouble(string words, int nbytes) {
/* Takes a string containing binary data and returns the value
associated to its representation, that could be either Float32
(float) or Float64 (double).
Args:
words - String containing binary data to use as the
representation of the floating point number
nbytes - Number of bytes of the representation. Must be either
4 (Float32) or 8 (Float64). Otherwise, an exception is thrown.
Returns:
The floating point number represented in the nbytes data.
*/
reverse(words.begin(), words.end());
string binaryString = "";
union {
double f; // assuming 32-bit IEEE 754 single-precision
uint64_t i; // assuming 32-bit 2's complement int
} u64;
union {
float f; // assuming 32-bit IEEE 754 single-precision
int i; // assuming 32-bit 2's complement int
} u32;
for (char& _char : words) {
binaryString +=bitset<8>(_char).to_string();
}
switch(nbytes){
case 8:
u64.i = bitset<64>(binaryString).to_ullong();
return u64.f;
case 4:
u32.i = bitset<32>(binaryString).to_ulong();
return u32.f;
default:
throw invalid_argument( "nbytes argument must be 4 or 8" );
}
}
void GetFlatArrFromNpy(string npypath, float ndarray[MAX_NDARRAY_SIZE], int shape[MAX_NDARRAY_DIM]){
/* Takes the path to a npy file containing a Numpy's n dimensional
array of with np.single or np.double datatypes and fills ndarray with
the flattened version the array and shape with the original shape.
Args:
npypath - String containing the .npy file path
ndarray - Array to save the flattened version of the n dimensional
array saved in the .npy. Its maximum size is MAX_NDARRAY_SIZE.
shape - Array to save the shape of the n dimensional array. Its
maximum size is MAX_NDARRAY_DIM.npy
*/
size_t loc1, loc2, loc3; //Three helpful variables when parsing the .npy header
ifstream infile(npypath, ifstream::binary); //Opening the .npy file
// Read the size
int size;
infile.read(reinterpret_cast<char *>(&size), sizeof(size));
// Allocate a string, make it large enough to hold the input
string buffer;
buffer.resize(size);
// Read the text into the string
infile.read(&buffer[0], buffer.size() );
infile.close();
//PARSING THE HEADER
//First, the data format is determined. Now only float is supported.
loc1 = buffer.find("descr");
loc2 = buffer.find(",", loc1+1);
string descr = buffer.substr(loc1+1+6, loc2-loc1-1-6);
int nbytes = (int)(descr[descr.find("<f")+2] - '0');
//Second, the ndarray shape
loc1 = buffer.find("shape");
loc1 = buffer.find("(", loc1+1);
loc2 = buffer.find(")", loc1+1);
loc3 = buffer.find(",", loc1+1);
string shape_str = buffer.substr(loc1+1, loc2-loc1-1);
int ndim;
if(loc2-loc3 == 1) ndim = 1; // One dimension array is shaped as (N,)
else ndim = count(shape_str.begin(), shape_str.end(), ',') + 1;
loc1 = -1;
int nelements = 1;
for(int i=0; i<ndim; i++){
loc2 = shape_str.find(",", loc1+1);
shape[i] = stoi(shape_str.substr(loc1+1, loc2-loc1-1), nullptr);
nelements *= shape[i];
loc1 = loc2;
}
//READING THE NDARRAY DATA
string element_str;
int elt_idx;
int data_loc = buffer.find('\n', loc1+1)+1;
for(elt_idx=0; elt_idx<nelements; elt_idx++){
element_str = buffer.substr(data_loc+elt_idx*nbytes, nbytes);
ndarray[elt_idx] = TextStringToDouble(element_str, nbytes);
}
}
int argmax(apfixed x[N_CLASSES]){
/* Argmax function. Takes an array and returns the index of
the maximum element.
Args:
X - The array to find the index of the maximum element.
Returns:
The integer index of the maximum element in the input array.
*/
apfixed comp = 0;
int max_idx = 0;
for(int i=0;i<N_CLASSES;i++){
if(x[i]>comp){
comp = x[i];
max_idx = i;
}
}
return max_idx;
}
int main() {
//Root path of the model
string model_path = "$model_path";
char subdirectory[256];
// Initialize model parameters variables
float conv2d_1_w_tmp[CONV2D_1_K_0*CONV2D_1_K_1*CONV2D_1_NF];
int conv2d_1_w_shape[4];
apfixed conv2d_1_w[CONV2D_1_K_0][CONV2D_1_K_1][CONV2D_1_NF];
float depthconv2d_1_w_tmp[DEPTHCONV2D_1_K_0*DEPTHCONV2D_1_K_1*DEPTHCONV2D_1_D*CONV2D_1_NF];
int depthconv2d_1_w_shape[4];
apfixed depthconv2d_1_w[DEPTHCONV2D_1_K_0][DEPTHCONV2D_1_K_1][CONV2D_1_NF][DEPTHCONV2D_1_D];
float sepdepth_1_w_tmp[SEPCONV2D_1_K_0*SEPCONV2D_1_K_1*CONV2D_1_NF*DEPTHCONV2D_1_D];
int sepdepth_1_w_shape[4];
apfixed sepdepth_1_w[SEPCONV2D_1_K_0][SEPCONV2D_1_K_1][CONV2D_1_NF*DEPTHCONV2D_1_D];
float seppointwise_1_w_tmp[CONV2D_1_NF*DEPTHCONV2D_1_D*SEPCONV2D_1_NF];
int seppointwise_1_w_shape[4];
apfixed seppointwise_1_w[CONV2D_1_NF*DEPTHCONV2D_1_D][SEPCONV2D_1_NF];
float dense_1_w_tmp[SEPCONV2D_1_NF*int(FS/DS)*T/AVGPOOL_1_K_1/AVGPOOL_2_K_1*N_CLASSES];
int dense_1_w_shape[4];
apfixed dense_1_w[SEPCONV2D_1_NF*int(FS/DS)*T/AVGPOOL_1_K_1/AVGPOOL_2_K_1][N_CLASSES];
float dense_1_b_tmp[N_CLASSES];
int dense_1_b_shape[4];
apfixed dense_1_b[N_CLASSES];
// Initialize the array to read the input
float X_tmp[CHANS*int(FS/DS)*T];
int X_shape[2];
apfixed X[CHANS][int(FS/DS)*T];
// Initialize the array to save the output
apfixed Y[N_CLASSES];
#ifdef FIXED
//Read fixed datatype details to include them in the output files names
int total_apfixed, int_apfixed;
sscanf(typeid(apfixed).name() , "8ap_fixedILi%dELi%dEL9ap_q_mode0EL9ap_o_mode0ELi0EE", &total_apfixed, &int_apfixed);
#endif
// Iterate over the folds
for(int fold=$initial_fold; fold<$max_fold; fold++){
/*----------------------------------------------------------------------------
--------------------------READING THE PARAMETERS------------------------------
----------------------------------------------------------------------------*/
// Reading the weights of the conv2d_1 layer
sprintf(subdirectory,"fold_%d/npyparams/conv2d_w.npy", fold);
GetFlatArrFromNpy(model_path+subdirectory, conv2d_1_w_tmp, conv2d_1_w_shape);
// Reshape it
for(int k=0; k<CONV2D_1_K_0; k++){
for(int j=0; j<CONV2D_1_K_1; j++){
for(int i=0; i<CONV2D_1_NF; i++){
conv2d_1_w[k][j][i] = conv2d_1_w_tmp[i+CONV2D_1_NF*j];
}
}
}
// Reading the weights of the depthconv2d_1 layer
sprintf(subdirectory,"fold_%d/npyparams/depthconv2d_w.npy", fold);
GetFlatArrFromNpy(model_path+subdirectory, depthconv2d_1_w_tmp, depthconv2d_1_w_shape);
// Reshape it
for(int l=0; l<DEPTHCONV2D_1_K_0; l++){
for(int k=0; k<DEPTHCONV2D_1_K_1; k++){
for(int j=0; j<CONV2D_1_NF; j++){
for(int i=0; i<DEPTHCONV2D_1_D; i++){
depthconv2d_1_w[l][k][j][i] = depthconv2d_1_w_tmp[i+DEPTHCONV2D_1_D*j+DEPTHCONV2D_1_D*CONV2D_1_NF*k+DEPTHCONV2D_1_D*CONV2D_1_NF*DEPTHCONV2D_1_K_1*l];
}
}
}
}
// Reading the weights of the sepdepth sublayer
sprintf(subdirectory,"fold_%d/npyparams/sepdepthconv2d_w.npy", fold);
GetFlatArrFromNpy(model_path+subdirectory, sepdepth_1_w_tmp, sepdepth_1_w_shape);
// Reshape it
for(int l=0; l<SEPCONV2D_1_K_0; l++){
for(int k=0; k<SEPCONV2D_1_K_1; k++){
for(int j=0; j<CONV2D_1_NF*DEPTHCONV2D_1_D; j++){
sepdepth_1_w[l][k][j] = sepdepth_1_w_tmp[j+DEPTHCONV2D_1_D*CONV2D_1_NF*k+DEPTHCONV2D_1_D*CONV2D_1_NF*SEPCONV2D_1_K_1*l];
}
}
}
// Reading the weights of the seppointwise sublayer
sprintf(subdirectory,"fold_%d/npyparams/seppointconv2d_w.npy", fold);
GetFlatArrFromNpy(model_path+subdirectory, seppointwise_1_w_tmp, seppointwise_1_w_shape);
// Reshape it
for(int l=0; l<CONV2D_1_NF*DEPTHCONV2D_1_D; l++){
for(int k=0; k<SEPCONV2D_1_NF; k++){
seppointwise_1_w[l][k] = seppointwise_1_w_tmp[k+SEPCONV2D_1_NF*l];
}
}
// Reading the weights of the dense layer
sprintf(subdirectory,"fold_%d/npyparams/dense_w.npy", fold);
GetFlatArrFromNpy(model_path+subdirectory, dense_1_w_tmp, dense_1_w_shape);
// Reshape it
for(int l=0; l<SEPCONV2D_1_NF*int(FS/DS)*T/AVGPOOL_1_K_1/AVGPOOL_2_K_1; l++){
for(int k=0; k<N_CLASSES; k++){
dense_1_w[l][k] = dense_1_w_tmp[k+N_CLASSES*l];
}
}
// Reading the bias params of the dense layer (No reshape needed, 1D array)
sprintf(subdirectory,"fold_%d/npyparams/dense_b.npy", fold);
GetFlatArrFromNpy(model_path+subdirectory, dense_1_b_tmp, dense_1_b_shape);
for(int i=0; i<N_CLASSES; i++) dense_1_b[i] = dense_1_b_tmp[i];
/*----------------------------------------------------------------------------
----------------------------TESTING THE NEURAL NETWORK -----------------------
----------------------------------------------------------------------------*/
// File to save the model outputs
#ifdef FIXED
sprintf(subdirectory, "%sfold_%d/validationDS/y_hls_%d_%d.txt", model_path.c_str(), fold, total_apfixed, int_apfixed);
#endif
#ifdef FLOAT
sprintf(subdirectory, "%sfold_%d/validationDS/y_hls_float.txt", model_path.c_str(), fold);
#endif
FILE *fout = fopen(subdirectory, "w");
// Iterate over the validation samples of the current fold
for(int j=0; j<21*int(DS*N_SUBS/N_FOLDS)*N_CLASSES; j++){
cout << "Fold " << fold+1 << "/" << N_FOLDS << " | Sample " << j+1 << "/" << 21*int(DS*N_SUBS/N_FOLDS)*N_CLASSES << "...";
// Reading an input element
sprintf(subdirectory,"fold_%d/validationDS/X_samples/X_%d.npy", fold, j);
GetFlatArrFromNpy(model_path+subdirectory, X_tmp, X_shape);
// Reshape it
for(int j=0; j<CHANS; j++){
for(int i=0; i<int(FS/DS)*T; i++){
X[j][i] = X_tmp[i+j*int(FS/DS)*T];
}
}
//Calculate the neural network output
MIBCI_QCNN(X, conv2d_1_w, CONV_LRELU_ALPHA, depthconv2d_1_w, DEPTH_LRELU_ALPHA, sepdepth_1_w, seppointwise_1_w, SEP_LRELU_ALPHA, dense_1_w, dense_1_b, Y);
// Save it
fprintf(fout, "%d %f %f %f %f\n", argmax(Y), float(Y[0]), float(Y[1]), float(Y[2]), float(Y[3]));
cout << "OK" << endl;
}
fclose(fout);
}
return 0;
}