-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathSoilMoistSensor.ino
185 lines (153 loc) · 6.09 KB
/
SoilMoistSensor.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/**
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <[email protected]>
* Copyright (C) 2013-2015 Sensnology AB
* Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*
* DESCRIPTION
*
* Arduino soil moisture based on gypsum sensor/resistive sensor to avoid electric catalyse in soil
* Required to interface the sensor: 2 * 4.7kOhm + 2 * 1N4148
*
* Gypsum sensor and calibration:
* DIY: See http://vanderleevineyard.com/1/category/vinduino/1.html
* Built: Davis / Watermark 200SS
* http://www.cooking-hacks.com/watermark-soil-moisture-sensor?_bksrc=item2item&_bkloc=product
* http://www.irrometer.com/pdf/supportmaterial/sensors/voltage-WM-chart.pdf
* cb (centibar) http://www.irrometer.com/basics.html
* 0-10 Saturated Soil. Occurs for a day or two after irrigation
* 10-20 Soil is adequately wet (except coarse sands which are drying out at this range)
* 30-60 Usual range to irrigate or water (except heavy clay soils).
* 60-100 Usual range to irrigate heavy clay soils
* 100-200 Soil is becoming dangerously dry for maximum production. Proceed with caution.
*
* Connection:
* D6, D7: alternative powering to avoid sensor degradation
* A0, A1: alternative resistance mesuring
*
* Based on:
* "Vinduino" portable soil moisture sensor code V3.00
* Date December 31, 2012
* Reinier van der Lee and Theodore Kaskalis
* www.vanderleevineyard.com
* Contributor: epierre
**/
// Copyright (C) 2015, Reinier van der Lee
// www.vanderleevineyard.com
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
#include <math.h> // Conversion equation from resistance to %
#include <SPI.h>
#include <MySensor.h>
// Setting up format for reading 3 soil sensors
#define NUM_READS 10 // Number of sensor reads for filtering
#define CHILD_ID 0
MySensor gw; // Arduino initialization
MyMessage msg(CHILD_ID, V_LEVEL);
unsigned long SLEEP_TIME = 30000; // Sleep time between reads (in milliseconds)
long buffer[NUM_READS];
int index;
typedef struct { // Structure to be used in percentage and resistance values matrix to be filtered (have to be in pairs)
int moisture;
long resistance;
} values;
const long knownResistor = 4700; // Constant value of known resistor in Ohms
int supplyVoltage; // Measured supply voltage
int sensorVoltage; // Measured sensor voltage
values valueOf[NUM_READS]; // Calculated moisture percentages and resistances to be sorted and filtered
int i; // Simple index variable
void setup() {
// initialize serial communications at 9600 bps:
Serial.begin(115200);
gw.begin();
gw.sendSketchInfo("Soil Moisture Sensor Reverse Polarity", "1.0");
gw.present(CHILD_ID, S_HUM);
// initialize the digital pins as an output.
// Pin 6,7 is for sensor 1
// initialize the digital pin as an output.
// Pin 6 is sense resistor voltage supply 1
pinMode(6, OUTPUT);
// initialize the digital pin as an output.
// Pin 7 is sense resistor voltage supply 2
pinMode(7, OUTPUT);
}
void loop() {
measure(1,6,7,1);
Serial.print ("\t");
Serial.println (average());
long read1 = average();
measure(1,7,6,0);
Serial.print ("\t");
Serial.println (average());
long read2= average();
long sensor1 = (read1 + read2)/2;
Serial.print ("resistance bias =" );
Serial.println (read1-read2);
Serial.print ("sensor bias compensated value = ");
Serial.println (sensor1);
Serial.println ();
//send back the values
gw.send(msg.set((long int)ceil(sensor1)));
// delay until next measurement (msec)
gw.sleep(SLEEP_TIME);
}
void measure (int sensor, int phase_b, int phase_a, int analog_input)
{
// read sensor, filter, and calculate resistance value
// Noise filter: median filter
for (i=0; i<NUM_READS; i++) {
// Read 1 pair of voltage values
digitalWrite(phase_a, HIGH); // set the voltage supply on
delayMicroseconds(25);
supplyVoltage = analogRead(analog_input); // read the supply voltage
delayMicroseconds(25);
digitalWrite(phase_a, LOW); // set the voltage supply off
delay(1);
digitalWrite(phase_b, HIGH); // set the voltage supply on
delayMicroseconds(25);
sensorVoltage = analogRead(analog_input); // read the sensor voltage
delayMicroseconds(25);
digitalWrite(phase_b, LOW); // set the voltage supply off
// Calculate resistance
// the 0.5 add-term is used to round to the nearest integer
// Tip: no need to transform 0-1023 voltage value to 0-5 range, due to following fraction
long resistance = (knownResistor * (supplyVoltage - sensorVoltage ) / sensorVoltage) ;
delay(1);
addReading(resistance);
Serial.print (resistance);
Serial.print ("\t");
}
}
// Averaging algorithm
void addReading(long resistance){
buffer[index] = resistance;
index++;
if (index >= NUM_READS) index = 0;
}
long average(){
long sum = 0;
for (int i = 0; i < NUM_READS; i++){
sum += buffer[i];
}
return (long)(sum / NUM_READS);
}