forked from dandelin/ViLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
73 lines (61 loc) · 2.13 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import copy
import pytorch_lightning as pl
from vilt.config import ex
from vilt.modules import ViLTransformerSS
from vilt.datamodules.multitask_datamodule import MTDataModule
@ex.automain
def main(_config):
_config = copy.deepcopy(_config)
pl.seed_everything(_config["seed"])
dm = MTDataModule(_config, dist=True)
model = ViLTransformerSS(_config)
exp_name = f'{_config["exp_name"]}'
os.makedirs(_config["log_dir"], exist_ok=True)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
save_top_k=1,
verbose=True,
monitor="val/the_metric",
mode="max",
save_last=True,
)
logger = pl.loggers.TensorBoardLogger(
_config["log_dir"],
name=f'{exp_name}_seed{_config["seed"]}_from_{_config["load_path"].split("/")[-1][:-5]}',
)
lr_callback = pl.callbacks.LearningRateMonitor(logging_interval="step")
callbacks = [checkpoint_callback, lr_callback]
num_gpus = (
_config["num_gpus"]
if isinstance(_config["num_gpus"], int)
else len(_config["num_gpus"])
)
grad_steps = _config["batch_size"] // (
_config["per_gpu_batchsize"] * num_gpus * _config["num_nodes"]
)
max_steps = _config["max_steps"] if _config["max_steps"] is not None else None
trainer = pl.Trainer(
gpus=_config["num_gpus"],
num_nodes=_config["num_nodes"],
precision=_config["precision"],
accelerator="ddp",
benchmark=True,
deterministic=True,
max_epochs=_config["max_epoch"] if max_steps is None else 1000,
max_steps=max_steps,
callbacks=callbacks,
logger=logger,
prepare_data_per_node=False,
replace_sampler_ddp=False,
accumulate_grad_batches=grad_steps,
log_every_n_steps=10,
flush_logs_every_n_steps=10,
resume_from_checkpoint=_config["resume_from"],
weights_summary="top",
fast_dev_run=_config["fast_dev_run"],
val_check_interval=_config["val_check_interval"],
)
if not _config["test_only"]:
trainer.fit(model, datamodule=dm)
else:
trainer.test(model, datamodule=dm)