-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathonnx_optimize.py
47 lines (36 loc) · 1.32 KB
/
onnx_optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""Command line script to optimize an ONNX model."""
import argparse
import onnx
from onnx import optimizer
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('input', metavar='INPUT_FILENAME',
help='filename of input model (e.g., mobilenetv3_large.onnx)')
parser.add_argument('output', metavar='OUTPUT_FILENAME',
help='filename of output model (e.g., mobilenetv3_large.opt.onnx)')
args = parser.parse_args()
print(f'==> Loading model {args.input}')
original_model = onnx.load(args.input)
print('Number of nodes before optimization:', len(original_model.graph.node))
print('==> Optimizing')
passes = [
'eliminate_identity',
'eliminate_nop_dropout',
'eliminate_nop_monotone_argmax',
'eliminate_nop_pad',
'eliminate_nop_transpose',
'eliminate_unused_initializer',
'extract_constant_to_initializer',
'fuse_add_bias_into_conv',
'fuse_bn_into_conv',
'fuse_consecutive_concats',
'fuse_consecutive_log_softmax',
'fuse_consecutive_reduce_unsqueeze',
'fuse_consecutive_squeezes',
'fuse_consecutive_transposes',
'fuse_pad_into_conv',
'nop',
]
optimized_model = optimizer.optimize(original_model, passes)
print('Number of nodes after optimization:', len(optimized_model.graph.node))
print(f'Output file: {args.output}')
onnx.save(optimized_model, args.output)