-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
52 lines (43 loc) · 1.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import Model
import time
from DenoisingDataLoader import NoisyDataset, ToTensor
from torch.utils.data import DataLoader
MAX_EPOCH = 1000
BATCH_SIZE = 4
CHANNELS = 3
MODEL = Model.FeaturePyramidNetwork()
def save_model(model, epoch):
torch.save(model, "./Checkpoints/" + model.name + "_{}.pth".format(epoch))
def train():
img_transforms = ToTensor()
dataset = NoisyDataset(csv_file="./TrainingSet.csv", noisy_dir="./TrainingSet/Images",
gt_dir="./TrainingSet/GroundTruths", transform=img_transforms)
data_loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
mse_loss = nn.MSELoss(reduction="sum")
model = MODEL.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, weight_decay=1e-3)
epoch = 0
for epoch in range(epoch, MAX_EPOCH):
t0 = time.time()
for data in data_loader:
img, gt_img = data["image"], data["gt_img"]
img = img.cuda().float()
gt_img = gt_img.cuda().float()
# ===================forward=====================
output = model(img)
loss = mse_loss(output, gt_img).cuda()
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
t1 = time.time()
print('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, MAX_EPOCH, loss.item()))
print('Time elapsed: {:.4f}'.format(t1 - t0))
if epoch % 5 == 4:
# Save inference model at every 5th Epoch (Checkpoint is not implemented)
save_model(model, epoch + 1)
if __name__ == '__main__':
train()