-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotUtils.py
326 lines (278 loc) · 13.3 KB
/
plotUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
from matplotlib import pyplot as plt
import h5py
from datetime import date
today = str(date.today())
from os import system
import pdb
from sklearn.calibration import calibration_curve
from scipy.stats import wasserstein_distance, sem
from scipy.spatial.distance import jensenshannon
import matplotlib
matplotlib.use('Agg')
from matplotlib.lines import Line2D
plt.style.use('default')
font = {'size':14}
matplotlib.rc('font', **font)
from esutil.stat import wmom
import pandas as pd
from variables import calculate_edep_np, calculate_non_zero_np, calculate_longitudinal_centroid_np, calculate_r2_np, calculate_Rz_np, calculate_Rx_np, calculate_lambda2_np
from pytorch_lightning import Trainer
class Plotter:
"""
Class to create plots.
The different kind of plots are created by the class methods.
"""
def __init__(self,
nominal_dataset: h5py._hl.group.Group,
dataset: h5py._hl.group.Group,
weights: np.ndarray) -> None:
self.max_events = 9000
# construct np.arrays
self.nominal_layers = nominal_dataset['layers'][:][:self.max_events, :, :, :] # shape: (self.max_events, 30, 30, 30)
self.layers = dataset['layers'][:][:self.max_events, :, :, :] # shape: (self.max_events, 30, 30, 30)
self.weights = 1./weights[:self.max_events] # shape: (self.max_events, )
self.saveDir = 'plots/'+today
system('mkdir -p '+self.saveDir)
def make_plot(self,
func,
histBins,
xRange,
xLabel,
savename):
# calculate observable
nominal = func(self.max_events, self.nominal_layers)
alternative = func(self.max_events, self.layers)
histos = [nominal, alternative]
# plot auxiliaries
labels = ["Nominal", "Alternative", "Corrected"]
colors=['k', 'r', 'b']
custom_lines = [Line2D([0], [0], color=color, lw=2) for color in colors[:2]]
custom_lines.append(Line2D([0], [0], color=colors[2], lw=2, linestyle='--'))
xMin, xMax = xRange
# First get the raw counts so that we calculate the uncertainty.
nsRaw, _, _ = plt.hist(histos, bins=histBins)
num = 1.0
denom = np.sqrt(nsRaw)
relUncs = np.divide(num, denom, out=np.zeros_like(denom), where=denom!=0)
# make histograms
plt.clf()
fig, (ax1, ax2) = plt.subplots(2, 1,
gridspec_kw = {'height_ratios':[3, 1]},
sharex=True,
dpi=200) #nrows=2, constrained_layout=True, figsize=(5 , 6)
ns, bins, patches = ax1.hist(histos,
bins=histBins,
range=(xMin, xMax),
histtype='step',
label=labels[:2],
linewidth=2,
weights=[100*np.ones((len(histo)))/len((histo)) for histo in histos],
color=colors[:2])
ns_wgt, bins_wgt, patches_wgt = ax1.hist(alternative,
weights=100.*self.weights/self.weights.sum(),
bins=histBins,
range=(xMin, xMax),
histtype='step',
linewidth=2,
color=colors[2],
linestyle='--',
label=labels[2])
tempbins = np.digitize(np.array(alternative), bins_wgt)
relWgtUncs = []
for binI in range(histBins):
bin_ws = self.weights[np.where(tempbins==binI+1)[0]]
bin_sumOfws = np.sum(bin_ws)
if bin_sumOfws != 0:
relWgtUncs.append(np.sqrt(np.sum(bin_ws**2.))/bin_sumOfws)
else:
relWgtUncs.append(0.0)
relWgtUncs = np.array(relWgtUncs)
# method to write the comparison metrics to the figure
self.write_metrics(ax1, ns, ns_wgt, histos)
# add legend
ax1.legend(custom_lines, labels, loc=2)
# configure main panel axes
ax1.set_ylabel('Percent of total')
ax1.set_xlim((xMin, xMax))
ax1.set_ylim([0, ax1.get_ylim()[1]*1.6])
# ratio plot
num = ns[1]
denom = ns[0]
binWidth = (xMax-xMin)/histBins
ratios = np.divide(num, denom, out=np.zeros_like(num), where=denom!=0)
ax2.errorbar(bins[:-1]+binWidth/2, # this is what makes it comparable
ratios,
linestyle='None',
color=colors[1],
marker = 'o',
yerr=ratios*np.sqrt(np.power(relUncs[0],2)+np.power(relUncs[1],2)),
markersize=5)
num_wgt = ns_wgt
ratios_wgt = np.divide(num_wgt, denom, out=np.zeros_like(num_wgt), where=denom!=0)
weightedRelUnc = num_wgt
ax2.errorbar(bins[:-1]+binWidth/2, # this is what makes it comparable
ratios_wgt,
linestyle='None',
color=colors[2],
marker = 'o',
yerr=ratios*np.sqrt(np.power(relUncs[0],2)+np.power(relWgtUncs,2)),
markersize=5)
# configure ratio panel axes
ax2.set_ylabel('Ratio\n(X/Nominal)')
ax2.set_xlabel(xLabel)
ax2.set_xlim((xMin, xMax))
# hline
ax2.axhline(y=1.0,
color='gray',
linestyle='-',
linewidth=0.5)
ax2.set_ylim([0.3, 1.7])
# grid
ax2.grid(which='major', axis='y')
fig.subplots_adjust(hspace=0.1)
fig.canvas.draw()
# save
plt.savefig(self.saveDir+f'/{savename}.png', bbox_inches='tight')
plt.savefig(self.saveDir+f'/{savename}.svg', bbox_inches='tight')
plt.savefig(self.saveDir+f'/{savename}.pdf', bbox_inches='tight')
# done
print("Plotter\t::\tDone plotting %s" % savename)
def plot_event_observables(self, suffix: str=''):
'''
Wrapper function to plot multiple event observables
'''
print("Plotter\t::\tPlotting event observables")
# dict of functions and parameters for different event obsrvables
observables_config = {'energy_deposit' : {'func': calculate_edep_np, 'histBins': 20, 'xRange': (150, 230), 'xLabel': 'Energy [MeV]', 'savename': 'edep'+suffix},
'sparsity' : {'func': calculate_non_zero_np, 'histBins': 28, 'xRange': (0.008, 0.015), 'xLabel': 'Non-zero [%]', 'savename': 'sparsity'+suffix},
'longitudinal_centroid' : {'func': calculate_longitudinal_centroid_np, 'histBins': 10, 'xRange': (9, 19), 'xLabel': 'Cell Idx', 'savename': 'l_centroid'+suffix},
'shower_shape_r2' : {'func': calculate_r2_np, 'histBins': 20, 'xRange': (350, 550), 'xLabel': 'r2', 'savename': 'r2'+suffix},
'shower_shape_Rz' : {'func': calculate_Rz_np, 'histBins': 20, 'xRange': (0.25, 1.25), 'xLabel': 'R_z', 'savename': 'Rz'+suffix},
'shower_shape_Rx' : {'func': calculate_Rx_np, 'histBins': 20, 'xRange': (0, 0.5), 'xLabel': 'R_x', 'savename': 'Rx'+suffix},
'shower_shape_l2' : {'func': calculate_lambda2_np, 'histBins': 20, 'xRange': (0, 400), 'xLabel': 'l2', 'savename': 'l2'+suffix}
}
for observable in observables_config:
self.make_plot(**observables_config[observable])
def write_metrics(self, ax1, ns, ns_wgt, histograms):
'''
Bin counts:
ns[0]: nominal
ns[1]: alternative
ns_wgt: alternative*weight
List of observable values per event
histograms = [nom_array, alt_array]
'''
# distabce metrics
w_distance = wasserstein_distance(ns[1], ns[0])
w_distance_wgt = wasserstein_distance(ns_wgt, ns[0])
js_distance = jensenshannon(ns[1], ns[0])
js_distance_wgt = jensenshannon(ns_wgt, ns[0])
# weighted mean standard error of the mean (alternative*weights)
wmean,werr = wmom(histograms[1], self.weights, inputmean=None, calcerr=True, sdev=False)
# standard error of the mean (nominal)
err = sem(histograms[0])
# ratio = statistical dilution
r = werr/err
font_size = 11
x_left = 0.7
y_top = 0.92
y_spacing = 0.08
ax1.text(x_left, y_top, 'WD (Alt.): %.2f' % round(w_distance, 2), transform=ax1.transAxes, fontsize=font_size)
ax1.text(x_left, y_top-y_spacing, 'WD (Corr.): %.2f' % round(w_distance_wgt, 2), transform=ax1.transAxes, fontsize=font_size)
ax1.text(x_left, y_top-2*y_spacing, 'JSD (Alt.): %.2f' % round(js_distance, 2), transform=ax1.transAxes, fontsize=font_size)
ax1.text(x_left, y_top-3*y_spacing, 'JSD (Corr.): %.2f' % round(js_distance_wgt, 2), transform=ax1.transAxes, fontsize=font_size)
ax1.text(x_left, y_top-4*y_spacing, 'r: %.2f' % round(r, 2), transform=ax1.transAxes, fontsize=font_size)
'''
-----------------
Ploting Functions
-----------------
'''
def plot_calibration_curve(labels, probs: np.ndarray) -> None:
'''
Plot calibration curve for model
'''
print("Plotter\t::\tPlotting calibration curve")
fig = plt.figure(figsize=(5 , 5), dpi=200)
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
frac_of_pos, mean_pred_value = calibration_curve(labels, probs, n_bins=10)
ax1.plot(mean_pred_value, frac_of_pos, "s-", label='3DConv')
ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend()
ax2.hist(probs, range=(0, 1), bins=10, histtype="step", lw=2)
ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
saveDir = 'plots/'+today
system('mkdir -p '+saveDir)
plt.savefig(saveDir+'/calibration_curve.png', bbox_inches='tight')
def plot_weights(weights: np.ndarray, suffix: str = '') -> None:
'''
Plot weights distribution
'''
print("Plotter\t::\tPlotting weights")
plt.figure(figsize=(5 , 5), dpi=200)
# bins = 10**(np.arange(0,6))
plt.hist(weights, bins=100, lw=2)
plt.ylabel("Events")
plt.yscale('log')
# plt.xscale('log')
plt.xlabel("Weight")
saveDir = 'plots/'+today
system('mkdir -p '+saveDir)
plt.savefig(saveDir+f'/weights{suffix}.png', bbox_inches='tight')
plt.savefig(saveDir+f'/weights{suffix}.pdf', bbox_inches='tight')
plt.savefig(saveDir+f'/weights{suffix}.svg', bbox_inches='tight')
def plot_metrics(csvLoggerPath: str, suffix: str = '') -> None:
'''
Plot metrics such as loss and accuracy.
'''
print("Plotter\t::\tPlotting losses")
# Load CSV file from logger
metrics = pd.read_csv(csvLoggerPath)
plt.figure(figsize=(5 , 5), dpi=200)
trainInfo = metrics[metrics['train_loss'].notnull()]
valInfo = metrics[metrics['val_loss'].notnull()]
print(trainInfo['step'].max())
print(valInfo['step'].max())
plt.plot(trainInfo['step'], trainInfo['train_loss'], label='Train loss')
plt.plot(valInfo['step'], valInfo['val_loss'], label='Val loss')
plt.xlabel("Step")
plt.ylabel("Loss")
plt.legend()
saveDir = 'plots/'+today
system('mkdir -p '+saveDir)
plt.savefig(saveDir+f'/loss{suffix}.png', bbox_inches='tight')
plt.savefig(saveDir+f'/loss{suffix}.pdf', bbox_inches='tight')
plt.savefig(saveDir+f'/loss{suffix}.svg', bbox_inches='tight')
plt.figure(figsize=(5 , 5), dpi=200)
trainInfo = metrics[metrics['train_accuracy'].notnull()]
valInfo = metrics[metrics['val_accuracy'].notnull()]
plt.plot(trainInfo['epoch'], trainInfo['train_accuracy'], label='Train loss')
plt.plot(valInfo['epoch'], valInfo['val_accuracy'], label='Val loss')
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
saveDir = 'plots/'+today
system('mkdir -p '+saveDir)
plt.savefig(saveDir+f'/accuracy{suffix}.png', bbox_inches='tight')
plt.savefig(saveDir+f'/accuracy{suffix}.pdf', bbox_inches='tight')
plt.savefig(saveDir+f'/accuracy{suffix}.svg', bbox_inches='tight')
def plot_training_metrics(trainer: Trainer) -> None:
metrics = trainer.callbacks[0].metrics
saveDir = 'plots/'+today
system('mkdir -p '+saveDir)
fig, ax = plt.subplots()
ax.plot(metrics['loss'])
ax.plot(metrics['valid_loss'])
ax.set_ylabel('loss')
ax.set_xlabel('epoch')
plt.savefig(saveDir+f'/loss.pdf', bbox_inches='tight')
fig, ax = plt.subplots()
ax.plot(metrics['accuracy'])
ax.plot(metrics['valid_accuracy'])
ax.set_ylabel('accuracy')
ax.set_xlabel('epoch')
plt.savefig(saveDir+f'/accuracy.pdf', bbox_inches='tight')