forked from ybgdgh/L3MVN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_llm_vis.py
1037 lines (846 loc) · 37.4 KB
/
main_llm_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from collections import deque, defaultdict
from itertools import count
import os
import logging
import time
import json
# import gym
import torch.nn as nn
import torch
import torch.optim as optim
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
from transformers import (
BertModel,
BertTokenizer,
RobertaModel,
RobertaTokenizer,
GPT2Model,
GPT2Tokenizer,
GPTNeoModel,
AutoTokenizer,
AutoModelForCausalLM,
GPTJModel,
)
from skimage import measure
import skimage.morphology
import cv2
from model import Semantic_Mapping, FeedforwardNet
from envs.utils.fmm_planner import FMMPlanner
from envs import make_vec_envs
from arguments import get_args
# import algo
from constants import category_to_id, hm3d_category, category_to_id_gibson
import envs.utils.pose as pu
os.environ["OMP_NUM_THREADS"] = "1"
fileName = "data/matterport_category_mappings.tsv"
text = ""
lines = []
items = []
hm3d_semantic_mapping = {}
hm3d_semantic_index = {}
hm3d_semantic_index_inv = {}
with open(fileName, "r") as f:
text = f.read()
lines = text.split("\n")[1:]
for l in lines:
items.append(l.split(" "))
for i in items:
if len(i) > 3:
hm3d_semantic_mapping[i[2]] = i[-1]
hm3d_semantic_index[i[-1]] = int(i[-2])
hm3d_semantic_index_inv[int(i[-2])] = i[-1]
def find_big_connect(image):
img_label, num = measure.label(
image, connectivity=2, return_num=True
) # 输出二值图像中所有的连通域
props = measure.regionprops(img_label) # 输出连通域的属性,包括面积等
# print("img_label.shape: ", img_label.shape) # 480*480
resMatrix = np.zeros(img_label.shape)
tmp_area = 0
for i in range(0, len(props)):
if props[i].area > tmp_area:
tmp = (img_label == i + 1).astype(np.uint8)
resMatrix = tmp
tmp_area = props[i].area
return resMatrix
def main():
args = get_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Setup Logging
log_dir = "{}/models/{}/".format(args.dump_location, args.exp_name)
dump_dir = "{}/dump/{}/".format(args.dump_location, args.exp_name)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(dump_dir):
os.makedirs(dump_dir)
logging.basicConfig(filename=log_dir + "train.log", level=logging.INFO)
print("Dumping at {}".format(log_dir))
print(args)
logging.info(args)
# Logging and loss variables
num_scenes = args.num_processes
num_episodes = int(args.num_eval_episodes)
device = args.device = torch.device("cuda:0" if args.cuda else "cpu")
g_masks = torch.ones(num_scenes).float().to(device)
step_masks = torch.zeros(num_scenes).float().to(device)
if args.eval:
episode_success = []
episode_spl = []
episode_dist = []
for _ in range(args.num_processes):
episode_success.append(deque(maxlen=num_episodes))
episode_spl.append(deque(maxlen=num_episodes))
episode_dist.append(deque(maxlen=num_episodes))
episode_sem_frontier = []
episode_sem_goal = []
episode_loc_frontier = []
for _ in range(args.num_processes):
episode_sem_frontier.append([])
episode_sem_goal.append([])
episode_loc_frontier.append([])
finished = np.zeros((args.num_processes))
wait_env = np.zeros((args.num_processes))
g_process_rewards = 0
g_total_rewards = np.ones((num_scenes))
g_sum_rewards = 1
g_sum_global = 1
stair_flag = np.zeros((num_scenes))
clear_flag = np.zeros((num_scenes))
# Starting environments
torch.set_num_threads(1)
envs = make_vec_envs(args)
obs, infos = envs.reset()
torch.set_grad_enabled(False)
# Initialize map variables:
# Full map consists of multiple channels containing the following:
# 1. Obstacle Map
# 2. Exploread Area
# 3. Current Agent Location
# 4. Past Agent Locations
# 5,6,7,.. : Semantic Categories
nc = args.num_sem_categories + 4 # num channels
# Calculating full and local map sizes
map_size = args.map_size_cm // args.map_resolution
full_w, full_h = map_size, map_size # 2400/5=480
local_w = int(full_w / args.global_downscaling)
local_h = int(full_h / args.global_downscaling)
# Initializing full and local map
full_map = torch.zeros(num_scenes, nc, full_w, full_h).float().to(device)
local_map = torch.zeros(num_scenes, nc, local_w, local_h).float().to(device)
local_ob_map = np.zeros((num_scenes, local_w, local_h))
local_ex_map = np.zeros((num_scenes, local_w, local_h))
target_edge_map = np.zeros((num_scenes, local_w, local_h))
target_point_map = np.zeros((num_scenes, local_w, local_h))
# dialate for target map
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
tv_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
# Initial full and local pose
full_pose = torch.zeros(num_scenes, 3).float().to(device)
local_pose = torch.zeros(num_scenes, 3).float().to(device)
# Origin of local map
origins = np.zeros((num_scenes, 3))
# Local Map Boundaries
lmb = np.zeros((num_scenes, 4)).astype(int)
# Planner pose inputs has 7 dimensions
# 1-3 store continuous global agent location
# 4-7 store local map boundaries
planner_pose_inputs = np.zeros((num_scenes, 7))
frontier_score_list = []
for _ in range(args.num_processes):
frontier_score_list.append(deque(maxlen=10))
object_norm_inv_perplexity = torch.tensor(
np.load("data/object_norm_inv_perplexity.npy")
).to(device)
def get_local_map_boundaries(agent_loc, local_sizes, full_sizes):
loc_r, loc_c = agent_loc
local_w, local_h = local_sizes
full_w, full_h = full_sizes
if args.global_downscaling > 1:
gx1, gy1 = loc_r - local_w // 2, loc_c - local_h // 2
gx2, gy2 = gx1 + local_w, gy1 + local_h
if gx1 < 0:
gx1, gx2 = 0, local_w
if gx2 > full_w:
gx1, gx2 = full_w - local_w, full_w
if gy1 < 0:
gy1, gy2 = 0, local_h
if gy2 > full_h:
gy1, gy2 = full_h - local_h, full_h
else:
gx1, gx2, gy1, gy2 = 0, full_w, 0, full_h
return [gx1, gx2, gy1, gy2]
def get_frontier_boundaries(frontier_loc, frontier_sizes, map_sizes):
loc_r, loc_c = frontier_loc
local_w, local_h = frontier_sizes
full_w, full_h = map_sizes
gx1, gy1 = loc_r - local_w // 2, loc_c - local_h // 2
gx2, gy2 = gx1 + local_w, gy1 + local_h
if gx1 < 0:
gx1, gx2 = 0, local_w
if gx2 > full_w:
gx1, gx2 = full_w - local_w, full_w
if gy1 < 0:
gy1, gy2 = 0, local_h
if gy2 > full_h:
gy1, gy2 = full_h - local_h, full_h
return [int(gx1), int(gx2), int(gy1), int(gy2)]
def init_map_and_pose():
full_map.fill_(0.0)
full_pose.fill_(0.0)
full_pose[:, :2] = args.map_size_cm / 100.0 / 2.0
locs = full_pose.cpu().numpy()
planner_pose_inputs[:, :3] = locs
for e in range(num_scenes):
r, c = locs[e, 1], locs[e, 0]
loc_r, loc_c = [
int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution),
]
full_map[e, 2:4, loc_r - 1 : loc_r + 2, loc_c - 1 : loc_c + 2] = 1.0
lmb[e] = get_local_map_boundaries(
(loc_r, loc_c), (local_w, local_h), (full_w, full_h)
)
planner_pose_inputs[e, 3:] = lmb[e]
origins[e] = [
lmb[e][2] * args.map_resolution / 100.0,
lmb[e][0] * args.map_resolution / 100.0,
0.0,
]
for e in range(num_scenes):
local_map[e] = full_map[e, :, lmb[e, 0] : lmb[e, 1], lmb[e, 2] : lmb[e, 3]]
local_pose[e] = (
full_pose[e] - torch.from_numpy(origins[e]).to(device).float()
)
def init_map_and_pose_for_env(e):
full_map[e].fill_(0.0)
full_pose[e].fill_(0.0)
local_ob_map[e] = np.zeros((local_w, local_h))
local_ex_map[e] = np.zeros((local_w, local_h))
target_edge_map[e] = np.zeros((local_w, local_h))
target_point_map[e] = np.zeros((local_w, local_h))
step_masks[e] = 0
stair_flag[e] = 0
clear_flag[e] = 0
full_pose[e, :2] = args.map_size_cm / 100.0 / 2.0
locs = full_pose[e].cpu().numpy()
planner_pose_inputs[e, :3] = locs
r, c = locs[1], locs[0]
loc_r, loc_c = [
int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution),
]
full_map[e, 2:4, loc_r - 1 : loc_r + 2, loc_c - 1 : loc_c + 2] = 1.0
lmb[e] = get_local_map_boundaries(
(loc_r, loc_c), (local_w, local_h), (full_w, full_h)
)
planner_pose_inputs[e, 3:] = lmb[e]
origins[e] = [
lmb[e][2] * args.map_resolution / 100.0,
lmb[e][0] * args.map_resolution / 100.0,
0.0,
]
local_map[e] = full_map[e, :, lmb[e, 0] : lmb[e, 1], lmb[e, 2] : lmb[e, 3]]
local_pose[e] = full_pose[e] - torch.from_numpy(origins[e]).to(device).float()
init_map_and_pose()
def remove_small_points(local_ob_map, image, threshold_point, pose):
# print("goal_cat_id: ", goal_cat_id)
# print("sem: ", sem.shape)
selem = skimage.morphology.disk(1)
traversible = skimage.morphology.binary_dilation(local_ob_map, selem) != True
# traversible = 1 - traversible
planner = FMMPlanner(traversible)
goal_pose_map = np.zeros((local_ob_map.shape))
pose_x = int(pose[0].cpu()) if int(pose[0].cpu()) < local_w - 1 else local_w - 1
pose_y = int(pose[1].cpu()) if int(pose[1].cpu()) < local_w - 1 else local_w - 1
goal_pose_map[pose_x, pose_y] = 1
# goal_map = skimage.morphology.binary_dilation(
# goal_pose_map, selem) != True
# goal_map = 1 - goal_map
planner.set_multi_goal(goal_pose_map)
img_label, num = measure.label(
image, connectivity=2, return_num=True
) # 输出二值图像中所有的连通域
props = measure.regionprops(img_label) # 输出连通域的属性,包括面积等
# print("img_label.shape: ", img_label.shape) # 480*480
# print("img_label.dtype: ", img_label.dtype) # 480*480
Goal_edge = np.zeros((img_label.shape[0], img_label.shape[1]))
Goal_point = np.zeros(img_label.shape)
Goal_score = []
dict_cost = {}
for i in range(1, len(props)):
# print("area: ", props[i].area)
# dist = pu.get_l2_distance(props[i].centroid[0], pose[0], props[i].centroid[1], pose[1])
dist = (
planner.fmm_dist[int(props[i].centroid[0]), int(props[i].centroid[1])]
* 5
)
dist_s = 8 if dist < 300 else 0
cost = props[i].area + dist_s
if props[i].area > threshold_point and dist > 50 and dist < 500:
dict_cost[i] = cost
if dict_cost:
dict_cost = sorted(dict_cost.items(), key=lambda x: x[1], reverse=True)
# print(dict_cost)
for i, (key, value) in enumerate(dict_cost):
# print(i, key)
Goal_edge[img_label == key + 1] = 1
Goal_point[int(props[key].centroid[0]), int(props[key].centroid[1])] = (
i + 1
) #
Goal_score.append(value)
if i == 3:
break
return Goal_edge, Goal_point, Goal_score
def configure_lm(lm):
"""
Configure the language model, tokenizer, and embedding generator function.
Sets self.lm, self.lm_model, self.tokenizer, and self.embedder based on the
selected language model inputted to this function.
Args:
lm: str representing name of LM to use
Returns:
None
"""
if lm == "BERT":
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
lm_model = BertModel.from_pretrained("bert-base-uncased")
start = "[CLS]"
end = "[SEP]"
elif lm == "BERT-large":
tokenizer = BertTokenizer.from_pretrained("bert-large-uncased")
lm_model = BertModel.from_pretrained("bert-large-uncased")
start = "[CLS]"
end = "[SEP]"
elif lm == "RoBERTa":
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
lm_model = RobertaModel.from_pretrained("roberta-base")
start = "<s>"
end = "</s>"
elif lm == "RoBERTa-large":
tokenizer = RobertaTokenizer.from_pretrained("roberta-large")
lm_model = RobertaModel.from_pretrained("roberta-large")
start = "<s>"
end = "</s>"
elif lm == "GPT2-large":
lm_model = GPT2Model.from_pretrained("gpt2-large")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
elif lm == "GPT-Neo":
lm_model = GPTNeoModel.from_pretrained("EleutherAI/gpt-neo-1.3B")
tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
elif lm == "GPT-J":
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
lm_model = GPTJModel.from_pretrained(
"EleutherAI/gpt-j-6B",
revision="float16",
torch_dtype=torch.float16, # low_cpu_mem_usage=True
)
else:
print("Model option " + lm + " not implemented yet")
raise
lm_model.eval()
lm_model = lm_model.to(device)
"""
Returns a function that embeds sentences with the selected
language model.
Args:
is_mlm: bool (optional) indicating if self.lm_model is an mlm.
Default
start: str representing start token for MLMs.
Must be set if is_mlm == True.
end: str representing end token for MLMs.
Must be set if is_mlm == True.
Returns:
function that takes in a query string and outputs a
[batch size=1, hidden state size] summary embedding
using self.lm_model
"""
def embedder(query_str):
query_str = start + " " + query_str + " " + end
tokenized_text = tokenizer.tokenize(query_str)
tokens_tensor = torch.tensor(
[tokenizer.convert_tokens_to_ids(tokenized_text)]
)
""" tokens_tensor = torch.tensor([indexed_tokens.to(self.device)])
"""
tokens_tensor = tokens_tensor.to(device) # if you have gpu
with torch.no_grad():
outputs = lm_model(tokens_tensor)
# hidden state is a tuple
hidden_state = outputs.last_hidden_state
# Shape (batch size=1, num_tokens, hidden state size)
# Return just the start token's embeddinge
return hidden_state[:, -1]
return embedder
def _object_query_constructor(objects):
"""
Construct a query string based on a list of objects
Args:
objects: torch.tensor of object indices contained in a room
Returns:
str query describing the room, eg "This is a room containing
toilets and sinks."
"""
assert len(objects) > 0
query_str = "This room contains "
names = []
for ob in objects:
names.append(ob)
if len(names) == 1:
query_str += names[0]
elif len(names) == 2:
query_str += names[0] + " and " + names[1]
else:
for name in names[:-1]:
query_str += name + ", "
query_str += "and " + names[-1]
query_str += "."
return query_str
# Semantic Mapping
sem_map_module = Semantic_Mapping(args).to(device)
sem_map_module.eval()
### LLM
embedder = configure_lm("RoBERTa-large")
output_size = len(category_to_id)
ff_net = FeedforwardNet(1024, output_size)
ff_net.to(device)
if args.load != "0":
print("Loading LLM model {}".format(args.load))
state_dict = torch.load(args.load, map_location=lambda storage, loc: storage)
ff_net.load_state_dict(state_dict)
ff_net.eval()
# Predict semantic map from frame 1
poses = (
torch.from_numpy(
np.asarray([infos[env_idx]["sensor_pose"] for env_idx in range(num_scenes)])
)
.float()
.to(device)
)
eve_angle = np.asarray(
[infos[env_idx]["eve_angle"] for env_idx in range(num_scenes)]
)
increase_local_map, local_map, local_map_stair, local_pose = sem_map_module(
obs, poses, local_map, local_pose, eve_angle
)
local_map[:, 0, :, :][local_map[:, 13, :, :] > 0] = 0
actions = torch.randn(num_scenes, 2) * 6
# print("actions: ", actions.shape)
cpu_actions = nn.Sigmoid()(actions).cpu().numpy()
global_goals = [
[int(action[0] * local_w), int(action[1] * local_h)] for action in cpu_actions
]
global_goals = [
[min(x, int(local_w - 1)), min(y, int(local_h - 1))] for x, y in global_goals
]
goal_maps = [np.zeros((local_w, local_h)) for _ in range(num_scenes)]
for e in range(num_scenes):
goal_maps[e][global_goals[e][0], global_goals[e][1]] = 1
planner_inputs = [{} for e in range(num_scenes)]
for e, p_input in enumerate(planner_inputs):
p_input["map_pred"] = local_map[e, 0, :, :].cpu().numpy()
p_input["exp_pred"] = local_map[e, 1, :, :].cpu().numpy()
p_input["pose_pred"] = planner_pose_inputs[e]
p_input["goal"] = goal_maps[e] # global_goals[e]
p_input["map_target"] = target_point_map[e] # global_goals[e]
p_input["new_goal"] = 1
p_input["found_goal"] = 0
p_input["wait"] = wait_env[e] or finished[e]
if args.visualize or args.print_images:
p_input["map_edge"] = target_edge_map[e]
local_map[e, -1, :, :] = 1e-5
p_input["sem_map_pred"] = local_map[e, 4:, :, :].argmax(0).cpu().numpy()
obs, _, done, infos = envs.plan_act_and_preprocess(planner_inputs)
start = time.time()
g_reward = 0
torch.set_grad_enabled(False)
spl_per_category = defaultdict(list)
success_per_category = defaultdict(list)
for step in range(args.num_training_frames // args.num_processes + 1):
if finished.sum() == args.num_processes:
break
g_step = (step // args.num_local_steps) % args.num_global_steps
l_step = step % args.num_local_steps
# ------------------------------------------------------------------
# Reinitialize variables when episode ends
l_masks = torch.FloatTensor([0 if x else 1 for x in done]).to(device)
g_masks *= l_masks
for e, x in enumerate(done):
if x:
spl = infos[e]["spl"]
success = infos[e]["success"]
dist = infos[e]["distance_to_goal"]
spl_per_category[infos[e]["goal_name"]].append(spl)
success_per_category[infos[e]["goal_name"]].append(success)
if args.eval:
episode_success[e].append(success)
episode_spl[e].append(spl)
episode_dist[e].append(dist)
if len(episode_success[e]) == num_episodes:
finished[e] = 1
wait_env[e] = 1.0
init_map_and_pose_for_env(e)
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Semantic Mapping Module
poses = (
torch.from_numpy(
np.asarray(
[infos[env_idx]["sensor_pose"] for env_idx in range(num_scenes)]
)
)
.float()
.to(device)
)
eve_angle = np.asarray(
[infos[env_idx]["eve_angle"] for env_idx in range(num_scenes)]
)
increase_local_map, local_map, local_map_stair, local_pose = sem_map_module(
obs, poses, local_map, local_pose, eve_angle
)
locs = local_pose.cpu().numpy()
planner_pose_inputs[:, :3] = locs + origins
local_map[:, 2, :, :].fill_(0.0) # Resetting current location channel
for e in range(num_scenes):
r, c = locs[e, 1], locs[e, 0]
loc_r, loc_c = [
int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution),
]
local_map[e, 2:4, loc_r - 2 : loc_r + 3, loc_c - 2 : loc_c + 3] = 1.0
# work for stairs in val
# ------------------------------------------------------------------
if args.eval:
# # clear the obstacle during the stairs
if loc_r > local_w:
loc_r = local_w - 1
if loc_c > local_h:
loc_c = local_h - 1
if infos[e]["clear_flag"] or local_map[e, 18, loc_r, loc_c] > 0.5:
stair_flag[e] = 1
if stair_flag[e]:
# must > 0
if torch.any(local_map[e, 18, :, :] > 0.5):
local_map[e, 0, :, :] = local_map_stair[e, 0, :, :]
local_map[e, 0, :, :] = local_map_stair[e, 0, :, :]
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Global Policy
if l_step == args.num_local_steps - 1:
# For every global step, update the full and local maps
for e in range(num_scenes):
step_masks[e] += 1
if wait_env[e] == 1: # New episode
wait_env[e] = 0.0
full_map[
e, :, lmb[e, 0] : lmb[e, 1], lmb[e, 2] : lmb[e, 3]
] = local_map[e]
full_pose[e] = (
local_pose[e] + torch.from_numpy(origins[e]).to(device).float()
)
locs = full_pose[e].cpu().numpy()
r, c = locs[1], locs[0]
loc_r, loc_c = [
int(r * 100.0 / args.map_resolution),
int(c * 100.0 / args.map_resolution),
]
lmb[e] = get_local_map_boundaries(
(loc_r, loc_c), (local_w, local_h), (full_w, full_h)
)
planner_pose_inputs[e, 3:] = lmb[e]
origins[e] = [
lmb[e][2] * args.map_resolution / 100.0,
lmb[e][0] * args.map_resolution / 100.0,
0.0,
]
local_map[e] = full_map[
e, :, lmb[e, 0] : lmb[e, 1], lmb[e, 2] : lmb[e, 3]
]
local_pose[e] = (
full_pose[e] - torch.from_numpy(origins[e]).to(device).float()
)
if infos[e]["clear_flag"]:
clear_flag[e] = 1
if clear_flag[e]:
local_map[e].fill_(0.0)
clear_flag[e] = 0
# ------------------------------------------------------------------
### select the frontier edge
# ------------------------------------------------------------------
# Edge Update
for e in range(num_scenes):
############################ choose global goal map #############################
# choose global goal map
_local_ob_map = local_map[e][0].cpu().numpy()
local_ob_map[e] = cv2.dilate(_local_ob_map, kernel)
show_ex = cv2.inRange(local_map[e][1].cpu().numpy(), 0.1, 1)
kernel = np.ones((5, 5), dtype=np.uint8)
free_map = cv2.morphologyEx(show_ex, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(
free_map, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE
)
if len(contours) > 0:
contour = max(contours, key=cv2.contourArea)
cv2.drawContours(local_ex_map[e], contour, -1, 1, 1)
# clear the boundary
local_ex_map[e, 0:2, 0:local_w] = 0.0
local_ex_map[e, local_w - 2 : local_w, 0 : local_w - 1] = 0.0
local_ex_map[e, 0:local_w, 0:2] = 0.0
local_ex_map[e, 0:local_w, local_w - 2 : local_w] = 0.0
target_edge = np.zeros((local_w, local_h))
target_edge = local_ex_map[e] - local_ob_map[e]
target_edge[target_edge > 0.8] = 1.0
target_edge[target_edge != 1.0] = 0.0
local_pose_map = [
local_pose[e][1] * 100 / args.map_resolution,
local_pose[e][0] * 100 / args.map_resolution,
]
(
target_edge_map[e],
target_point_map[e],
Goal_score,
) = remove_small_points(_local_ob_map, target_edge, 4, local_pose_map)
local_ob_map[e] = np.zeros((local_w, local_h))
local_ex_map[e] = np.zeros((local_w, local_h))
# ------------------------------------------------------------------
##### LLM frontier score
# ------------------------------------------------------------------
cn = infos[e]["goal_cat_id"] + 4
cname = infos[e]["goal_name"]
frontier_score_list[e] = []
tpm = len(list(set(target_point_map[e].ravel()))) - 1
for lay in range(tpm):
f_pos = np.argwhere(target_point_map[e] == lay + 1)
fmb = get_frontier_boundaries(
(f_pos[0][0], f_pos[0][1]),
(local_w / 4, local_h / 4),
(local_w, local_h),
)
objs_list = []
for se_cn in range(args.num_sem_categories - 1):
if (
local_map[e][
se_cn + 4, fmb[0] : fmb[1], fmb[2] : fmb[3]
].sum()
!= 0.0
):
objs_list.append(hm3d_category[se_cn])
if len(objs_list) > 0:
objs_p = [hm3d_semantic_index[obj] for obj in objs_list]
objs_p = torch.tensor(objs_p)
y_object = F.one_hot(objs_p, 42).type(torch.LongTensor)
# np_objs = objs
y_object = y_object.to(device)
scores = y_object * object_norm_inv_perplexity.reshape([1, -1])
maxes = torch.max(scores, dim=1).values
top_max_inds = torch.topk(
maxes, max(min((maxes > 0).sum(), 3), 1)
).indices
objs = torch.argmax(scores[top_max_inds], dim=1)
objs = torch.where(
torch.bincount(objs, minlength=len(objs)) > 0
)[0]
# for objs_p in multiset_permutations(np_objs, k_room):
objs = objs.cpu().numpy()
objs_n = [hm3d_semantic_index_inv[obj] for obj in objs]
query_str = _object_query_constructor(objs_n)
# query_str = torch.tensor(query_str)
query_embedding = embedder(query_str)
pred = ff_net(query_embedding)
pred = nn.Softmax(dim=1)(pred)
frontier_score_list[e].append(
pred[0][hm3d_category.index(cname)].cpu().numpy()
)
else:
frontier_score_list[e].append(
Goal_score[lay] / max(Goal_score) * 0.1 + 0.1
)
# ------------------------------------------------------------------
##### select randomly point
# ------------------------------------------------------------------
actions = torch.randn(num_scenes, 2) * 6
cpu_actions = nn.Sigmoid()(actions).numpy()
global_goals = [
[int(action[0] * local_w), int(action[1] * local_h)]
for action in cpu_actions
]
global_goals = [
[min(x, int(local_w - 1)), min(y, int(local_h - 1))]
for x, y in global_goals
]
g_masks = torch.ones(num_scenes).float().to(device)
# --------------------------------------------------------------------
# ------------------------------------------------------------------
# Update long-term goal if target object is found
found_goal = [0 for _ in range(num_scenes)]
local_goal_maps = [np.zeros((local_w, local_h)) for _ in range(num_scenes)]
for e in range(num_scenes):
# ------------------------------------------------------------------
##### select frontier point
# ------------------------------------------------------------------
global_item = 0
if len(frontier_score_list[e]) > 0:
if max(frontier_score_list[e]) > 0.2:
global_item = frontier_score_list[e].index(
max(frontier_score_list[e])
)
# elif max(frontier_score_list[e]) > 0.1:
# for f_score in frontier_score_list[e]:
# if f_score > 0.1:
# break
# else:
# global_item += 1
# else:
# global_item = 0
# ------------------------------------------------------------------
###### Get llm frontier reward
# ------------------------------------------------------------------
if max(frontier_score_list[e]) > 0.1:
if args.task_config == "tasks/objectnav_gibson.yaml":
g_reward = infos[e]["g_reward"]
g_process_rewards += g_reward
g_sum_rewards += 1
# print("get llm result!")
if np.any(target_point_map[e] == global_item + 1):
local_goal_maps[e][target_point_map[e] == global_item + 1] = 1
# print("Find the edge")
g_sum_global += 1
else:
local_goal_maps[e][global_goals[e][0], global_goals[e][1]] = 1
# print("Don't Find the edge")
cn = infos[e]["goal_cat_id"] + 4
if local_map[e, cn, :, :].sum() != 0.0:
# print("Find the target")
cat_semantic_map = local_map[e, cn, :, :].cpu().numpy()
cat_semantic_scores = cat_semantic_map
cat_semantic_scores[cat_semantic_scores > 0] = 1.0
if cn == 9:
cat_semantic_scores = cv2.dilate(cat_semantic_scores, tv_kernel)
local_goal_maps[e] = find_big_connect(cat_semantic_scores)
found_goal[e] = 1
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Take action and get next observation
planner_inputs = [{} for e in range(num_scenes)]
for e, p_input in enumerate(planner_inputs):
# planner_pose_inputs[e, 3:] = [0, local_w, 0, local_h]
p_input["map_pred"] = local_map[e, 0, :, :].cpu().numpy()
p_input["exp_pred"] = local_map[e, 1, :, :].cpu().numpy()
p_input["pose_pred"] = planner_pose_inputs[e]
p_input["goal"] = local_goal_maps[e] # global_goals[e]
p_input["map_target"] = target_point_map[e] # global_goals[e]
p_input["new_goal"] = l_step == args.num_local_steps - 1
p_input["found_goal"] = found_goal[e]
p_input["wait"] = wait_env[e] or finished[e]
if args.visualize or args.print_images:
p_input["map_edge"] = target_edge_map[e]
local_map[e, -1, :, :] = 1e-5
p_input["sem_map_pred"] = local_map[e, 4:, :, :].argmax(0).cpu().numpy()
obs, fail_case, done, infos = envs.plan_act_and_preprocess(planner_inputs)
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# ------------------------------------------------------------------
if step % args.log_interval == 0:
end = time.time()
time_elapsed = time.gmtime(end - start)
log = " ".join(
[
"Time: {0:0=2d}d".format(time_elapsed.tm_mday - 1),
"{},".format(time.strftime("%Hh %Mm %Ss", time_elapsed)),
"num timesteps {},".format(step * num_scenes),
"FPS {},".format(int(step * num_scenes / (end - start))),
]
)
log += "\n\tLLM Rewards: " + str(g_process_rewards / g_sum_rewards)
log += "\n\tLLM use rate: " + str(g_sum_rewards / g_sum_global)
if args.eval:
total_success = []
total_spl = []
total_dist = []
for e in range(args.num_processes):
for acc in episode_success[e]:
total_success.append(acc)
for dist in episode_dist[e]:
total_dist.append(dist)
for spl in episode_spl[e]:
total_spl.append(spl)
if len(total_spl) > 0:
log += " ObjectNav succ/spl/dtg:"
log += " {:.3f}/{:.3f}/{:.3f}({:.0f}),".format(
np.mean(total_success),
np.mean(total_spl),
np.mean(total_dist),
len(total_spl),
)
total_collision = []
total_exploration = []
total_detection = []
total_success = []
for e in range(args.num_processes):
total_collision.append(fail_case[e]["collision"])
total_exploration.append(fail_case[e]["exploration"])
total_detection.append(fail_case[e]["detection"])
total_success.append(fail_case[e]["success"])
if len(total_spl) > 0:
log += " Fail Case: collision/exploration/detection/success:"
log += " {:.0f}/{:.0f}/{:.0f}/{:.0f}({:.0f}),".format(
np.sum(total_collision),
np.sum(total_exploration),
np.sum(total_detection),
np.sum(total_success),
len(total_spl),
)
print(log)
logging.info(log)
# ------------------------------------------------------------------
# Print and save model performance numbers during evaluation
if args.eval:
print("Dumping eval details...")
log += "\n\tLLM Rewards: " + str(g_process_rewards / g_sum_rewards)
log += "\n\tLLM use rate: " + str(g_sum_rewards / g_sum_global)
total_success = []
total_spl = []
total_dist = []
for e in range(args.num_processes):
for acc in episode_success[e]:
total_success.append(acc)
for dist in episode_dist[e]:
total_dist.append(dist)
for spl in episode_spl[e]:
total_spl.append(spl)