-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_baseline_flags.py
112 lines (96 loc) · 3.75 KB
/
plot_baseline_flags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
plt.ioff()
msfile = sys.argv[-1]
if not os.path.exists(msfile):
print('No data found')
data_path = '/home/jmoldon/processing/emerlin/TS8004_C_001_20190801/'
msname = 'TS8004_C_001_20190801_avg.ms'
msfile = os.path.join(data_path, msname)
def get_spws(msfile):
msmd.open(msfile)
spws = msmd.datadescids()
freq_spw = {spw:msmd.chanfreqs(spw) for spw in spws}
freqs = np.concatenate([freq_spw[s] for s in spws])
msmd.close()
return spws, freqs
def avg_flags_spw(msfile, spw, scan=None, field=None, bsl=None):
if scan is not None:
scan = str(scan)
bsl = bsl.replace('-', '&')
ms.open(msfile)
staql={'spw': str(spw), 'field':field, 'baseline':bsl, 'scan':scan}
ms.msselect(staql)
d = ms.getdata(['flag', 'axis_info'])
ms.close()
flags = np.average(d['flag'], axis=(0,2))
freqs = d['axis_info']['freq_axis']['chan_freq'][:,0]
return flags, freqs
def read_flags(msfile, spws, scan=None, field=None, bsl=None):
flags = np.array([])
freqs = np.array([])
for spw in spws:
flags_spw, freqs_spw = avg_flags_spw(msfile, spw=spw, bsl=bsl)
flags = np.concatenate([flags, flags_spw])
freqs = np.concatenate([freqs, freqs_spw])
return freqs, flags
def get_baselines(msfile):
msmd.open(msfile)
antennas0 = msmd.antennanames()
baselines0 = msmd.baselines()
baselines = []
for i, a in enumerate(antennas0):
for j, b in enumerate(antennas0):
if j > i:
baselines.append('{0}-{1}'.format(a, b))
baselines_id = []
for bsl in baselines:
a0_id = np.argwhere(np.array(antennas0) ==bsl.split('-')[0])[0][0]
a1_id = np.argwhere(np.array(antennas0) ==bsl.split('-')[1])[0][0]
baselines_id.append('{0}-{1}'.format(a0_id, a1_id))
return np.array(baselines), np.array(baselines_id)
def plot_flags(freqs, flags_bsl, bsl):
fig, ax = plt.subplots(1,1, figsize=(14,6))
ax.fill_between(freqs, flags_bsl, facecolor='0.5')
ax.set_title(bsl)
ax.set_xlim(np.min(freqs), np.max(freqs))
ax.set_ylim(np.min(flags_bsl) ,1)
maxlocator=MaxNLocator(nbins=9)
minlocator=MaxNLocator(nbins=9*4)
ax.xaxis.set_major_locator(maxlocator)
ax.xaxis.set_minor_locator(minlocator)
ax.grid(which='both', ls = '-', alpha=0.2, axis='x')
fig.savefig('flags_{}.png'.format(bsl), bbox_inches='tight')
def plot_all_flags(data, baselines):
fig, ax = plt.subplots(nrows=len(baselines),
ncols=1,
figsize=(14,2*len(baselines)),
sharex=True)
maxlocator=MaxNLocator(nbins=9)
minlocator=MaxNLocator(nbins=9*4)
for i, ax in enumerate(ax):
ax.fill_between(data[:,0], data[:,i+1], facecolor='0.5')
ax.set_title(baselines[i])
ax.set_xlim(np.min(data[:,0]), np.max(data[:,0]))
ax.set_ylim(np.min(data[:,i+1]),1)
ax.xaxis.set_major_locator(maxlocator)
ax.xaxis.set_minor_locator(minlocator)
ax.grid(which='both', ls = '-', alpha=0.2, axis='x')
fig.savefig('flags_{}.png'.format('all'), bbox_inches='tight')
baselines, baselines_id = get_baselines(msfile)
spws, freqs_ms = get_spws(msfile)
data = np.zeros((len(freqs_ms), len(baselines)+1))
# First column for the frequencies
data[:,0] = freqs_ms/1e9
for i, bsl in enumerate(baselines):
print(bsl)
freqs, flags_bsl = read_flags(msfile, spws=spws, bsl=bsl)
plot_flags(freqs/1e9, flags_bsl, bsl)
data[:,i+1] = flags_bsl
plot_all_flags(data, baselines)
header = 'freq,' + ','.join([bsl for bsl in baselines])
fileout = 'flags.csv'
np.savetxt(fileout, data, delimiter=',', fmt='%6.4f', header=header)