-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
88 lines (72 loc) · 2.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
'''
Exploration schedules
'''
class ConstantSchedule(object):
def __init__(self, value):
self._v = value
def value(self, t):
return self._v
def linear_interpolation(l, r, alpha):
return l + alpha * (r - l)
class PiecewiseSchedule(object):
def __init__(self, endpoints):
"""
endpoints: [(time, value)]
"""
self._endpoints = endpoints
def value(self, t):
for (time_1, value_1), (time_2, value_2) in zip(self._endpoints[:-1], self._endpoints[1:]):
if t >= time_1 and t <= time_2:
alpha = float(t - time_1) / (time_2 - time_1)
return linear_interpolation(value_1, value_2, alpha)
class LinearSchedule(object):
def __init__(self, initial_p, final_p, steps):
self.initial_p = initial_p
self.final_p = final_p
self.schedule_timesteps = steps
def value(self, t):
"""See Schedule.value"""
fraction = min(float(t) / self.schedule_timesteps, 1.0)
return self.initial_p + fraction * (self.final_p - self.initial_p)
'''
Math-y things
'''
# https://github.com/matthiasplappert/keras-rl/blob/master/rl/random.py
class RandomProcess(object):
def reset_states(self):
pass
class AnnealedGaussianProcess(RandomProcess):
def __init__(self, mu, sigma, sigma_min, n_steps_annealing):
self.mu = mu
self.sigma = sigma
self.n_steps = 0
if sigma_min is not None:
self.m = -float(sigma - sigma_min) / float(n_steps_annealing)
self.c = sigma
self.sigma_min = sigma_min
else:
self.m = 0.
self.c = sigma
self.sigma_min = sigma
@property
def current_sigma(self):
sigma = max(self.sigma_min, self.m * float(self.n_steps) + self.c)
return sigma
# Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OrnsteinUhlenbeckProcess(AnnealedGaussianProcess):
def __init__(self, theta, mu=0., sigma=1., dt=1e-2, x0=None, size=1, sigma_min=None, n_steps_annealing=1000):
super(OrnsteinUhlenbeckProcess, self).__init__(mu=mu, sigma=sigma, sigma_min=sigma_min, n_steps_annealing=n_steps_annealing)
self.theta = theta
self.mu = mu
self.dt = dt
self.x0 = x0
self.size = size
self.reset_states()
def sample(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.current_sigma * np.sqrt(self.dt) * np.random.normal(size=self.size)
self.x_prev = x
self.n_steps += 1
return x
def reset_states(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros(self.size)