-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ddpg.py
111 lines (85 loc) · 2.92 KB
/
main_ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
from torch.autograd import Variable
import torch.nn.utils as utils
import gym
from gym import wrappers
import numpy as np
import os
from ddpg import DDPG
from normalized_actions import *
from utils import *
from logger import Logger
NUM_EPISODES = 5000
NUM_STEPS = 500
GAMMA = 0.99
CKPT_FREQ = 100
BATCH_SIZE = 64
UPDATE_RATE = 0.001
RENDER_VIDEO = 100
SAVE_VIDEO = 25
# Gym things
env_name = 'HalfCheetah-v1' #'Pendulum-v0' #'HalfCheetah-v1' #'MountainCarContinuous-v0' #'Hopper-v1' #'InvertedPendulum-v1'
env = NormalizedActions(gym.make(env_name))
monitor_dir = 'tmp/' + env_name
if not os.path.exists(monitor_dir):
os.mkdir(monitor_dir)
env = wrappers.Monitor(env, monitor_dir, force=True, video_callable=lambda episode_id: episode_id%SAVE_VIDEO==0)
env._max_episodes_steps = NUM_STEPS
# Learning agent
agent = DDPG(observation_dim=env.observation_space.shape[0],
num_actions=env.action_space.shape[0],
batch_size=BATCH_SIZE,
gamma=GAMMA,
d_epsilon=50000,
update_rate=UPDATE_RATE,
is_train=True)
# Set the logger
log_dir = 'logs'
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logger = Logger(log_dir)
num_steps = 0
episode_rewards = []
for i_episode in range(NUM_EPISODES):
state = env.reset()
rewards = []
#for i in range(NUM_STEPS):
while True:
if (i_episode % RENDER_VIDEO == 0):
env.render()
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action[0])
agent.store_experience(state, action, [reward], next_state, done)
rewards.append(reward)
state = next_state
agent.update_model()
agent.reset()
num_steps += 1
if done:
break
episode_reward = np.sum(rewards)
episode_rewards.append(episode_reward)
if i_episode % CKPT_FREQ == 0:
torch.save(agent.critic_target.state_dict(), os.path.join(monitor_dir, 'critic-' + str(i_episode) + '.pkl'))
torch.save(agent.actor_target.state_dict(), os.path.join(monitor_dir, 'actor-' + str(i_episode) + '.pkl'))
if i_episode % 1 == 0:
print("Episode: {}, i {}, reward: {}".format(i_episode, num_steps, episode_reward))
#============ TensorBoard logging ============#
if len(episode_rewards) >= 100:
last_100_reward = np.mean(episode_rewards[-100:])
else:
last_100_reward = np.mean(episode_rewards)
info = {
'reward_per_episode': episode_reward,
'mean_reward_last_100_episodes': last_100_reward,
}
for tag, value in info.items():
logger.scalar_summary(tag, value, i_episode+1)
info = {
'reward_per_episode_over_iters': episode_reward,
'mean_reward_last_100_episodes_over_iters': last_100_reward,
'num_episodes_per_steps': i_episode,
}
for tag, value in info.items():
logger.scalar_summary(tag, value, num_steps)
env.close()