-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsha256-crypt.c
579 lines (487 loc) · 16.8 KB
/
sha256-crypt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/* SHA256-based Unix crypt implementation.
Released into the Public Domain by Ulrich Drepper <[email protected]>. */
/*
Slightly modified by Daniel Vérité, 2018:
- no declaration of variables in for loops for pre-C99 compilers
- replaced mempcpy with equivalent memcpy calls.
- moved some definitions into sha256.h
- removed inclusion of endian.h.
See https://www.akkadia.org/drepper/SHA-crypt.txt
for the original source code.
*/
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/types.h>
#include "sha256.h"
#if __BYTE_ORDER == __LITTLE_ENDIAN
# define SWAP(n) \
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#else
# define SWAP(n) (n)
#endif
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. (FIPS 180-2:5.1.1) */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
static const uint32_t K[64] =
{
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0. */
static void
sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
{
const uint32_t *words = buffer;
size_t nwords = len / sizeof (uint32_t);
uint32_t a = ctx->H[0];
uint32_t b = ctx->H[1];
uint32_t c = ctx->H[2];
uint32_t d = ctx->H[3];
uint32_t e = ctx->H[4];
uint32_t f = ctx->H[5];
uint32_t g = ctx->H[6];
uint32_t h = ctx->H[7];
/* First increment the byte count. FIPS 180-2 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += len;
if (ctx->total[0] < len)
++ctx->total[1];
/* Process all bytes in the buffer with 64 bytes in each round of
the loop. */
while (nwords > 0)
{
unsigned int t;
uint32_t W[64];
uint32_t a_save = a;
uint32_t b_save = b;
uint32_t c_save = c;
uint32_t d_save = d;
uint32_t e_save = e;
uint32_t f_save = f;
uint32_t g_save = g;
uint32_t h_save = h;
/* Operators defined in FIPS 180-2:4.1.2. */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
/* It is unfortunate that C does not provide an operator for
cyclic rotation. Hope the C compiler is smart enough. */
#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
for (t = 0; t < 16; ++t)
{
W[t] = SWAP (*words);
++words;
}
for (t = 16; t < 64; ++t)
W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
for (t = 0; t < 64; ++t)
{
uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
uint32_t T2 = S0 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
/* Add the starting values of the context according to FIPS 180-2:6.2.2
step 4. */
a += a_save;
b += b_save;
c += c_save;
d += d_save;
e += e_save;
f += f_save;
g += g_save;
h += h_save;
/* Prepare for the next round. */
nwords -= 16;
}
/* Put checksum in context given as argument. */
ctx->H[0] = a;
ctx->H[1] = b;
ctx->H[2] = c;
ctx->H[3] = d;
ctx->H[4] = e;
ctx->H[5] = f;
ctx->H[6] = g;
ctx->H[7] = h;
}
/* Initialize structure containing state of computation.
(FIPS 180-2:5.3.2) */
static void
sha256_init_ctx (struct sha256_ctx *ctx)
{
ctx->H[0] = 0x6a09e667;
ctx->H[1] = 0xbb67ae85;
ctx->H[2] = 0x3c6ef372;
ctx->H[3] = 0xa54ff53a;
ctx->H[4] = 0x510e527f;
ctx->H[5] = 0x9b05688c;
ctx->H[6] = 0x1f83d9ab;
ctx->H[7] = 0x5be0cd19;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
static void *
sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
{
/* Take yet unprocessed bytes into account. */
uint32_t bytes = ctx->buflen;
size_t pad;
int i;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
++ctx->total[1];
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
memcpy (&ctx->buffer[bytes], fillbuf, pad);
/* Put the 64-bit file length in *bits* at the end of the buffer. */
*(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
*(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
(ctx->total[0] >> 29));
/* Process last bytes. */
sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
/* Put result from CTX in first 32 bytes following RESBUF. */
for (i = 0; i < 8; ++i)
((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
return resbuf;
}
static void
sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
{
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0)
{
size_t left_over = ctx->buflen;
size_t add = 128 - left_over > len ? len : 128 - left_over;
memcpy (&ctx->buffer[left_over], buffer, add);
ctx->buflen += add;
if (ctx->buflen > 64)
{
sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
ctx->buflen &= 63;
/* The regions in the following copy operation cannot overlap. */
memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
ctx->buflen);
}
buffer = (const char *) buffer + add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 64)
{
/* To check alignment gcc has an appropriate operator. Other
compilers don't. */
#if __GNUC__ >= 2
# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
#else
# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
#endif
if (UNALIGNED_P (buffer))
while (len > 64)
{
sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
buffer = (const char *) buffer + 64;
len -= 64;
}
else
{
sha256_process_block (buffer, len & ~63, ctx);
buffer = (const char *) buffer + (len & ~63);
len &= 63;
}
}
/* Move remaining bytes into internal buffer. */
if (len > 0)
{
size_t left_over = ctx->buflen;
memcpy (&ctx->buffer[left_over], buffer, len);
left_over += len;
if (left_over >= 64)
{
sha256_process_block (ctx->buffer, 64, ctx);
left_over -= 64;
memcpy (ctx->buffer, &ctx->buffer[64], left_over);
}
ctx->buflen = left_over;
}
}
/* Define our magic string to mark salt for SHA256 "encryption"
replacement. */
static const char sha256_salt_prefix[] = SHA256_SALT_PREFIX;
/* Prefix for optional rounds specification. */
static const char sha256_rounds_prefix[] = SHA256_ROUNDS_PREFIX;
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999
/* Table with characters for base64 transformation. */
static const char b64t[64] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
char *
sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen)
{
unsigned char alt_result[32]
__attribute__ ((__aligned__ (__alignof__ (uint32_t))));
unsigned char temp_result[32]
__attribute__ ((__aligned__ (__alignof__ (uint32_t))));
struct sha256_ctx ctx;
struct sha256_ctx alt_ctx;
size_t salt_len;
size_t key_len;
size_t cnt;
char *cp;
char *copied_key = NULL;
char *copied_salt = NULL;
char *p_bytes;
char *s_bytes;
/* Default number of rounds. */
size_t rounds = ROUNDS_DEFAULT;
bool rounds_custom = false;
/* Find beginning of salt string. The prefix should normally always
be present. Just in case it is not. */
if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
/* Skip salt prefix. */
salt += sizeof (sha256_salt_prefix) - 1;
if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
== 0)
{
const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
char *endp;
unsigned long int srounds = strtoul (num, &endp, 10);
if (*endp == '$')
{
salt = endp + 1;
rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
rounds_custom = true;
}
}
salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
key_len = strlen (key);
if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
{
char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
key = copied_key =
memcpy (tmp + __alignof__ (uint32_t)
- (tmp - (char *) 0) % __alignof__ (uint32_t),
key, key_len);
}
if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
{
char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
salt = copied_salt =
memcpy (tmp + __alignof__ (uint32_t)
- (tmp - (char *) 0) % __alignof__ (uint32_t),
salt, salt_len);
}
/* Prepare for the real work. */
sha256_init_ctx (&ctx);
/* Add the key string. */
sha256_process_bytes (key, key_len, &ctx);
/* The last part is the salt string. This must be at most 16
characters and it ends at the first `$' character (for
compatibility with existing implementations). */
sha256_process_bytes (salt, salt_len, &ctx);
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
final result will be added to the first context. */
sha256_init_ctx (&alt_ctx);
/* Add key. */
sha256_process_bytes (key, key_len, &alt_ctx);
/* Add salt. */
sha256_process_bytes (salt, salt_len, &alt_ctx);
/* Add key again. */
sha256_process_bytes (key, key_len, &alt_ctx);
/* Now get result of this (32 bytes) and add it to the other
context. */
sha256_finish_ctx (&alt_ctx, alt_result);
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > 32; cnt -= 32)
sha256_process_bytes (alt_result, 32, &ctx);
sha256_process_bytes (alt_result, cnt, &ctx);
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
for (cnt = key_len; cnt > 0; cnt >>= 1)
if ((cnt & 1) != 0)
sha256_process_bytes (alt_result, 32, &ctx);
else
sha256_process_bytes (key, key_len, &ctx);
/* Create intermediate result. */
sha256_finish_ctx (&ctx, alt_result);
/* Start computation of P byte sequence. */
sha256_init_ctx (&alt_ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < key_len; ++cnt)
sha256_process_bytes (key, key_len, &alt_ctx);
/* Finish the digest. */
sha256_finish_ctx (&alt_ctx, temp_result);
/* Create byte sequence P. */
cp = p_bytes = alloca (key_len);
for (cnt = key_len; cnt >= 32; cnt -= 32)
cp = (char*)memcpy (cp, temp_result, 32) + 32;
memcpy (cp, temp_result, cnt);
/* Start computation of S byte sequence. */
sha256_init_ctx (&alt_ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
sha256_process_bytes (salt, salt_len, &alt_ctx);
/* Finish the digest. */
sha256_finish_ctx (&alt_ctx, temp_result);
/* Create byte sequence S. */
cp = s_bytes = alloca (salt_len);
for (cnt = salt_len; cnt >= 32; cnt -= 32)
cp = (char*)memcpy (cp, temp_result, 32) + 32;
memcpy (cp, temp_result, cnt);
/* Repeatedly run the collected hash value through SHA256 to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt)
{
/* New context. */
sha256_init_ctx (&ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
sha256_process_bytes (p_bytes, key_len, &ctx);
else
sha256_process_bytes (alt_result, 32, &ctx);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
sha256_process_bytes (s_bytes, salt_len, &ctx);
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
sha256_process_bytes (p_bytes, key_len, &ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
sha256_process_bytes (alt_result, 32, &ctx);
else
sha256_process_bytes (p_bytes, key_len, &ctx);
/* Create intermediate result. */
sha256_finish_ctx (&ctx, alt_result);
}
/* Now we can construct the result string. It consists of three
parts. */
cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
buflen -= sizeof (sha256_salt_prefix) - 1;
if (rounds_custom)
{
int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
sha256_rounds_prefix, rounds);
cp += n;
buflen -= n;
}
cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
if (buflen > 0)
{
*cp++ = '$';
--buflen;
}
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
int n = (N); \
while (n-- > 0 && buflen > 0) \
{ \
*cp++ = b64t[w & 0x3f]; \
--buflen; \
w >>= 6; \
} \
} while (0)
b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
b64_from_24bit (0, alt_result[31], alt_result[30], 3);
if (buflen <= 0)
{
errno = ERANGE;
buffer = NULL;
}
else
*cp = '\0'; /* Terminate the string. */
/* Clear the buffer for the intermediate result so that people
attaching to processes or reading core dumps cannot get any
information. We do it in this way to clear correct_words[]
inside the SHA256 implementation as well. */
sha256_init_ctx (&ctx);
sha256_finish_ctx (&ctx, alt_result);
memset (temp_result, '\0', sizeof (temp_result));
memset (p_bytes, '\0', key_len);
memset (s_bytes, '\0', salt_len);
memset (&ctx, '\0', sizeof (ctx));
memset (&alt_ctx, '\0', sizeof (alt_ctx));
if (copied_key != NULL)
memset (copied_key, '\0', key_len);
if (copied_salt != NULL)
memset (copied_salt, '\0', salt_len);
return buffer;
}
/* This entry point is equivalent to the `crypt' function in Unix
libcs. */
char *
sha256_crypt (const char *key, const char *salt)
{
/* We don't want to have an arbitrary limit in the size of the
password. We can compute an upper bound for the size of the
result in advance and so we can prepare the buffer we pass to
`sha256_crypt_r'. */
static char *buffer;
static int buflen;
int needed = (sizeof (sha256_salt_prefix) - 1
+ sizeof (sha256_rounds_prefix) + 9 + 1
+ strlen (salt) + 1 + 43 + 1);
if (buflen < needed)
{
char *new_buffer = (char *) realloc (buffer, needed);
if (new_buffer == NULL)
return NULL;
buffer = new_buffer;
buflen = needed;
}
return sha256_crypt_r (key, salt, buffer, buflen);
}