-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathp191_mnist.py
32 lines (23 loc) · 1.13 KB
/
p191_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder("float32", [None, 784])
W = tf.Variable(tf.ones([784, 10]))
b = tf.Variable(tf.ones([10]))
y = tf.matmul(x, W) + b
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(tf.nn.softmax(y)), reduction_indices=[1]))
#cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
#loss = tf.reduce_sum(tf.pow((y - y_), 2))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#sess = tf.Session()
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
#init = tf.global_variables_initializer()
#sess.run(init)
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_:mnist.test.labels}))