-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLeNet5.py
86 lines (69 loc) · 4.36 KB
/
LeNet5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('./tmp/data', one_hot=True)
sess = tf.InteractiveSession()
# 训练数据
x = tf.placeholder("float", shape=[None, 784])
# 训练标签数据
y_ = tf.placeholder("float", shape=[None, 10])
# 把x更改为4维张量,第1维代表样本数量,第2维和第3维代表图像长宽, 第4维代表图像通道数, 1表示黑白
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 第一层:卷积层
conv1_weights = tf.get_variable("conv1_weights", [5, 5, 1, 32], initializer=tf.truncated_normal_initializer(
stddev=0.1)) # 过滤器大小为5*5, 当前层深度为1, 过滤器的深度为32
conv1_biases = tf.get_variable("conv1_biases", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(x_image, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') # 移动步长为1, 使用全0填充
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) # 激活函数Relu去线性化
# 第二层:最大池化层
# 池化层过滤器的大小为2*2, 移动步长为2,使用全0填充
pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 第三层:卷积层
conv2_weights = tf.get_variable("conv2_weights", [5, 5, 32, 64], initializer=tf.truncated_normal_initializer(
stddev=0.1)) # 过滤器大小为5*5, 当前层深度为32, 过滤器的深度为64
conv2_biases = tf.get_variable("conv2_biases", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME') # 移动步长为1, 使用全0填充
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
# 第四层:最大池化层
# 池化层过滤器的大小为2*2, 移动步长为2,使用全0填充
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 第五层:全连接层
fc1_weights = tf.get_variable("fc1_weights", [7 * 7 * 64, 1024],
initializer=tf.truncated_normal_initializer(stddev=0.1)) # 7*7*64=3136把前一层的输出变成特征向量
fc1_baises = tf.get_variable("fc1_baises", [1024], initializer=tf.constant_initializer(0.1))
pool2_vector = tf.reshape(pool2, [-1, 7 * 7 * 64])
fc1 = tf.nn.relu(tf.matmul(pool2_vector, fc1_weights) + fc1_baises)
# 为了减少过拟合,加入Dropout层
keep_prob = tf.placeholder(tf.float32)
fc1_dropout = tf.nn.dropout(fc1, keep_prob)
# 第六层:全连接层
fc2_weights = tf.get_variable("fc2_weights", [1024, 10],
initializer=tf.truncated_normal_initializer(stddev=0.1)) # 神经元节点数1024, 分类节点10
fc2_biases = tf.get_variable("fc2_biases", [10], initializer=tf.constant_initializer(0.1))
fc2 = tf.matmul(fc1_dropout, fc2_weights) + fc2_biases
# 第七层:输出层
# softmax
y_conv = tf.nn.softmax(fc2)
# 定义交叉熵损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
# 选择优化器,并让优化器最小化损失函数/收敛, 反向传播
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真实值
# 判断预测值y和真实值y_中最大数的索引是否一致,y的值为1-10概率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# 用平均值来统计测试准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始训练
sess.run(tf.global_variables_initializer())
for i in range(10000):
batch_xs, batch_ys = mnist.train.next_batch(100)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0}) # 评估阶段不使用Dropout
print("step %d, training accuracy %.3f" % (i, train_accuracy))
print("conv1.shape:", conv1.shape)
print("pool1.shape:", pool1.shape)
print("conv2.shape:", conv2.shape)
print("pool2.shape:", pool2.shape)
train_step.run(feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5}) # 训练阶段使用50%的Dropout
# 在测试数据上测试准确率
print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
print("validation accuracy %g" % accuracy.eval(feed_dict={x: mnist.validation.images, y_: mnist.validation.labels, keep_prob: 1.0}))