forked from Algo-Phantoms/Algo-Tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_valid_BST.java
226 lines (204 loc) · 8.11 KB
/
check_valid_BST.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*This is the solution to check if a binary tree is a Binary Search tree.
This solution works for duplicate input values of nodes as well.
Constraints:
0<= NodeValue <= 10^4
Incorrect Approach:
It is not enough to check if the left node of current node is smaller than it and the right node of current node is larger than it respectively.
This approach would't work for the following example(input taken level-wise) which is actually not a Binary Search Tree --
[15,12,23,9,24,-1,-1,-1,-1,-1,-1]
Correct Approach:
1. For each node we have to check, if maximum value in its left sub tree is smaller than the respective node value and the minimum value in its right sub tree is larger than the respective node value.
Time Complexity: O(n^2)
Space Complexity: O(1)
2. It is a property of Binary Search Tree that its inorder traversal produces a sorted list in ascending order. By inorder traversal of the tree we store the elements in a list and then check if the list is sorted.
Time Complexity : O(n)
Space Complexity : O(n)
*/
package algotree;
import java.util.*;
//Class which defines the structure of each node in the binary tree
class Node {
private int data;
private Node left;
private Node right;
public int getNodeData() {
return this.data;
}
public Node getNodeLeft() {
return this.left;
}
public Node getNodeRight() {
return this.right;
}
public void setNodeLeft(Node child) {
this.left = child;
}
public void setNodeRight(Node child) {
this.right = child;
}
Node(int data) {
this.data = data;
}
}
public class CheckBST {
private static ArrayList < Integer > arr = new ArrayList < Integer > ();
//Create a binary tree by taking input level wise
public static Node createBinaryTree() {
Scanner sc = new Scanner(System.in);
System.out.print("Enter root node value or -1 to exit: ");
int rootData = sc.nextInt();
Node root = null;
if (rootData != -1) {
root = new Node(rootData);
} else {
sc.close();
return root;
}
Queue < Node > tree = new LinkedList < > ();
tree.add(root);
while (!tree.isEmpty()) {
Node temp = tree.remove();
System.out.print("Enter left child of " + temp.getNodeData() + " or -1 if there is no left child: ");
int leftChild = sc.nextInt();
// if leftChild is not null
if (leftChild != -1) {
//Create leftChild Node
Node child = new Node(leftChild);
tree.add(child);
//Create leftChildNode of a frontNode
temp.setNodeLeft(child);
}
System.out.print("Enter right child of " + temp.getNodeData() + " or -1 if there is no right child: ");
int rightChild = sc.nextInt();
//if rightChild is not null
if (rightChild != -1) {
//Create rightChild
Node child = new Node(rightChild);
tree.add(child);
//Create rightChildNode of a frontNode
temp.setNodeRight(child);
}
}
sc.close();
return root;
}
//Approach 1:
//Function to find the maximum element in the Left Sub Tree of any node : Rightmost node with no child
public static Node maxLST(Node root) {
if (root == null)
return root;
else if (root.getNodeRight() == null)
return root;
else
return maxLST(root.getNodeRight());
}
//Function to find the minimum element in the Right Sub Tree of any node : Leftmost Node with no child
public static Node minRST(Node root) {
if (root == null)
return root;
else if (root.getNodeLeft() == null)
return root;
else
return minRST(root.getNodeLeft());
}
//Function to check if a tree is a Binary Search Tree by Approach 1
public static boolean checkBST1(Node root) {
if (root == null)
return true;
//Return false if max element in LST is greater than root
else if ((root.getNodeLeft() != null) && (maxLST(root.getNodeLeft()).getNodeData() >= root.getNodeData()))
return false;
//Return false if min element in RST is smaller than root
else if ((root.getNodeRight() != null) && (minRST(root.getNodeRight()).getNodeData() <= root.getNodeData()))
return false;
//The subtrees of root should be BSTs as well
return ((checkBST1(root.getNodeLeft())) && (checkBST1(root.getNodeRight())));
}
//Approach 2:
//Function to produce a list by inorder traversal of tree
public static void inorder(Node root) {
if (root == null)
return;
inorder(root.getNodeLeft());
arr.add(root.getNodeData());
inorder(root.getNodeRight());
}
//Function to check if a Binary Tree is a Binary Search Tree by Approach 2
public static boolean checkBST2(Node root) {
if (root == null)
return true;
boolean check = true;
inorder(root);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i - 1) >= arr.get(i)) {
check = false;
break;
}
}
return check;
}
public static void main(String[] args) {
Node root = createBinaryTree();
boolean check;
System.out.println("Checking by Approach 1:");
check = checkBST1(root);
if (check)
System.out.println("It is a Binary Search Tree");
else
System.out.println("It is not a Binary Search Tree");
System.out.println("Checking by Approach 2:");
check = checkBST2(root);
if (check)
System.out.println("It is a Binary Search Tree");
else
System.out.println("It is not a Binary Search Tree");
}
}
/*
Sample Input 1:
Enter root node value or -1 to exit: 56
Enter left child of 56 or -1 if there is no left child: 26
Enter right child of 56 or -1 if there is no right child: 200
Enter left child of 26 or -1 if there is no left child: 18
Enter right child of 26 or -1 if there is no right child: 28
Enter left child of 200 or -1 if there is no left child: 190
Enter right child of 200 or -1 if there is no right child: 213
Enter left child of 18 or -1 if there is no left child: 12
Enter right child of 18 or -1 if there is no right child: 24
Enter left child of 28 or -1 if there is no left child: 27
Enter right child of 28 or -1 if there is no right child: -1
Enter left child of 190 or -1 if there is no left child: -1
Enter right child of 190 or -1 if there is no right child: -1
Enter left child of 213 or -1 if there is no left child: -1
Enter right child of 213 or -1 if there is no right child: -1
Enter left child of 12 or -1 if there is no left child: -1
Enter right child of 12 or -1 if there is no right child: -1
Enter left child of 24 or -1 if there is no left child: -1
Enter right child of 24 or -1 if there is no right child: -1
Enter left child of 27 or -1 if there is no left child: -1
Enter right child of 27 or -1 if there is no right child: -1
Sample Output 1:
Checking by Approach 1:
It is a Binary Search Tree
Checking by Approach 2:
It is a Binary Search Tree
Sample Input 2:
Enter root node value or -1 to exit: 15
Enter left child of 15 or -1 if there is no left child: 12
Enter right child of 15 or -1 if there is no right child: 28
Enter left child of 12 or -1 if there is no left child: 9
Enter right child of 12 or -1 if there is no right child: 24
Enter left child of 28 or -1 if there is no left child: -1
Enter right child of 28 or -1 if there is no right child: -1
Enter left child of 9 or -1 if there is no left child: -1
Enter right child of 9 or -1 if there is no right child: -1
Enter left child of 24 or -1 if there is no left child: -1
Enter right child of 24 or -1 if there is no right child: -1
Sample Output 2:
Checking by Approach 1:
It is not a Binary Search Tree
Checking by Approach 2:
It is not a Binary Search Tree
Time Complexity : O(n)
Space Complexity : O(n)
*/