-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchart_decoder.pyx
172 lines (124 loc) · 6.07 KB
/
chart_decoder.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-
# This code is adapted from https://github.com/nikitakit/self-attentive-parser
import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float32_t DTYPE_t
ORACLE_PRECOMPUTED_TABLE = {}
@cython.boundscheck(False)
def decode(int force_gold, int sentence_len, int num_previous_indices, np.ndarray[DTYPE_t, ndim=2] label_scores, int is_training, gold_tree, label_encoder):
cdef DTYPE_t NEG_INF = -np.inf
cdef np.ndarray[DTYPE_t, ndim=2] cloned_label_scores = label_scores.copy()
cdef np.ndarray[DTYPE_t, ndim=2] value_chart = np.zeros((sentence_len + 1, sentence_len + 1), dtype=np.float32)
cdef np.ndarray[int, ndim=2] split_idx_chart = np.zeros((sentence_len + 1, sentence_len + 1), dtype=np.int32)
cdef np.ndarray[int, ndim=2] best_label_chart = np.zeros((sentence_len + 1, sentence_len + 1), dtype=np.int32)
cdef int label_index_iter
cdef int length, left, right, span_index
cdef int oracle_label_index, argmax_label_index
cdef int best_split, split_idx
cdef DTYPE_t label_score, split_val, max_split_val
cdef np.ndarray[int, ndim=2] oracle_label_chart, oracle_split_chart
if is_training or force_gold:
if gold_tree in ORACLE_PRECOMPUTED_TABLE:
oracle_label_chart, oracle_split_chart = ORACLE_PRECOMPUTED_TABLE[gold_tree]
else:
oracle_label_chart = np.zeros((sentence_len + 1, sentence_len + 1), dtype=np.int32)
oracle_split_chart = np.zeros((sentence_len + 1, sentence_len + 1), dtype=np.int32)
for length in range(1, sentence_len + 1):
for left in range(0, sentence_len + 1 - length):
right = left + length
oracle_label_chart[left, right] = label_encoder.transform(gold_tree.oracle_label(left, right))
if length == 1:
continue
oracle_split_chart[left, right] = min(gold_tree.oracle_splits(left, right))
ORACLE_PRECOMPUTED_TABLE[gold_tree] = oracle_label_chart, oracle_split_chart
span_index = -1
for length in range(1, sentence_len + 1):
for left in range(0, sentence_len + 1 - length):
right = left + length
span_index += 1
if is_training or force_gold:
oracle_label_index = oracle_label_chart[left, right]
if force_gold:
label_score = cloned_label_scores[span_index, oracle_label_index]
best_label_chart[left, right] = oracle_label_index
else:
if is_training:
# Augment scores
cloned_label_scores[span_index, oracle_label_index] -= 1
argmax_label_index = int(length >= sentence_len)
# Compute argmax manually
label_score = cloned_label_scores[span_index, argmax_label_index]
for label_index_iter in range(1, cloned_label_scores.shape[1]):
if cloned_label_scores[span_index, label_index_iter] > label_score:
argmax_label_index = label_index_iter
label_score = cloned_label_scores[span_index, label_index_iter]
best_label_chart[left, right] = argmax_label_index
if is_training:
# Augment scores
label_score += 1
if length == 1:
value_chart[left, right] = label_score
continue
if force_gold:
best_split = oracle_split_chart[left, right]
else:
best_split = left + 1
split_val = NEG_INF
for split_idx in range(left + 1, right):
max_split_val = value_chart[left, split_idx] + value_chart[split_idx, right]
if max_split_val > split_val:
best_split = split_idx
split_val = max_split_val
value_chart[left, right] = label_score + value_chart[left, best_split] + value_chart[best_split, right]
split_idx_chart[left, right] = best_split
"""
N = 4
L0: (0, 4)
L1: (0, 1), (1, 4)
L2: (1, 2), (2, 4)
L3: (2, 3), (3, 4)
Nodes = 2 * N - 1 (full binary tree)
"""
cdef int i, j, k, l, n
n = sentence_len
cdef int num_tree_nodes = 2 * n - 1
cdef np.ndarray[int, ndim=1] included_i = np.empty(num_tree_nodes, dtype=np.int32)
cdef np.ndarray[int, ndim=1] included_j = np.empty(num_tree_nodes, dtype=np.int32)
cdef np.ndarray[int, ndim=1] included_indices = np.empty(num_tree_nodes, dtype=np.int32)
cdef np.ndarray[int, ndim=1] included_labels = np.empty(num_tree_nodes, dtype=np.int32)
cdef int idx = 0
cdef int stack_idx = 1
cdef np.ndarray[int, ndim=1] stack_i = np.empty(num_tree_nodes + 5, dtype=np.int32)
cdef np.ndarray[int, ndim=1] stack_j = np.empty(num_tree_nodes + 5, dtype=np.int32)
stack_i[1] = 0
stack_j[1] = n
while stack_idx > 0:
i = stack_i[stack_idx]
j = stack_j[stack_idx]
stack_idx -= 1 # Pop
included_i[idx] = i
included_j[idx] = j
l = j - i
included_indices[idx] = (n * (n + 1) - (n - l + 1) * (n - l + 2)) >> 1
included_indices[idx] += i
included_labels[idx] = best_label_chart[i, j]
idx += 1
if i + 1 < j:
# Select best split point
k = split_idx_chart[i, j]
# Insert (k, j)
stack_idx += 1
stack_i[stack_idx] = k
stack_j[stack_idx] = j
# Insert (i, k)
stack_idx += 1
stack_i[stack_idx] = i
stack_j[stack_idx] = k
cdef DTYPE_t original_score = 0.0
for idx in range(num_tree_nodes):
original_score += label_scores[included_indices[idx], included_labels[idx]]
included_indices[idx] += num_previous_indices
cdef DTYPE_t augmented_score = value_chart[0, n]
cdef DTYPE_t augmented_amount = round(augmented_score - original_score)
return augmented_score, included_i, included_j, included_indices, included_labels, augmented_amount