diff --git a/doc/grahom.xml b/doc/grahom.xml
index 19aae9595..0d5158e0c 100644
--- a/doc/grahom.xml
+++ b/doc/grahom.xml
@@ -87,7 +87,7 @@
For backwards compatibility, injective can also be false
or true which correspond to the values 0 and 1
- described in the previous paragraph, respectively.
+ described in the previous paragraph, respectively.
image
@@ -106,28 +106,28 @@
D1. HomomorphismDigraphsFinder only finds homomorphisms
extending partial_map (if any).
-
+
colors1
-
This should be a list representing possible colours of vertices in the
- digraph D1; see
-
+ digraph D1; see
+
for details of the permissible values for this argument.
-
+
colors2
-
This should be a list representing possible colours of vertices in the
- digraph D2; see
-
+ digraph D2; see
+
for details of the permissible values for this argument.
order
-
The optional argument order specifies the order the
- vertices in D1 appear in the search for homomorphisms.
+ vertices in D1 appear in the search for homomorphisms.
The value of this parameter can have a large impact
on the runtime of the function. It seems in many cases to be a good
idea for this to be the
, i.e.
@@ -149,7 +149,7 @@ gap> D := DigraphSymmetricClosure(D);
gap> HomomorphismDigraphsFinder(D, D, fail, [], infinity, 2, 0,
> [3, 4], [], fail, fail);
-[ Transformation( [ 3, 4, 3, 4, 3, 4, 3, 4, 3, 4 ] ),
+[ Transformation( [ 3, 4, 3, 4, 3, 4, 3, 4, 3, 4 ] ),
Transformation( [ 4, 3, 4, 3, 4, 3, 4, 3, 4, 3 ] ) ]
gap> D2 := CompleteDigraph(6);;
gap> HomomorphismDigraphsFinder(D, D2, fail, [], 1, fail, 0,
@@ -160,20 +160,20 @@ gap> func := function(user_param, t)
> end;;
gap> HomomorphismDigraphsFinder(D, D2, func, [Transformation([2, 2])],
> 3, fail, 0, [1 .. 6], [1, 2, 1], fail, fail);
-[ Transformation( [ 2, 2 ] ),
- Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 2 ] ),
- Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 3 ] ),
+[ Transformation( [ 2, 2 ] ),
+ Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 2 ] ),
+ Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 3 ] ),
Transformation( [ 2, 2, 2, 3, 4, 5, 6, 2, 2, 4 ] ) ]
gap> HomomorphismDigraphsFinder(NullDigraph(2), NullDigraph(3), fail,
> [], infinity, fail, 1, [1, 2, 3], fail, fail, fail, fail,
> Group(()));
-[ IdentityTransformation, Transformation( [ 1, 3, 3 ] ),
- Transformation( [ 2, 1 ] ), Transformation( [ 2, 3, 3 ] ),
+[ IdentityTransformation, Transformation( [ 1, 3, 3 ] ),
+ Transformation( [ 2, 1 ] ), Transformation( [ 2, 3, 3 ] ),
Transformation( [ 3, 1, 3 ] ), Transformation( [ 3, 2, 3 ] ) ]
gap> HomomorphismDigraphsFinder(NullDigraph(2), NullDigraph(3), fail,
> [], infinity, fail, 1, [1, 2, 3], fail, fail, fail, fail,
> Group((1, 2)));
-[ IdentityTransformation, Transformation( [ 1, 3, 3 ] ),
+[ IdentityTransformation, Transformation( [ 1, 3, 3 ] ),
Transformation( [ 3, 1, 3 ] ) ]]]>
@@ -232,9 +232,9 @@ gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
gap> HomomorphismsDigraphs(gr1, gr2);
-[ Transformation( [ 1, 3, 1 ] ), Transformation( [ 1, 3, 3 ] ),
- Transformation( [ 1, 5, 4, 4, 5 ] ), Transformation( [ 2, 2, 2 ] ),
- Transformation( [ 3, 1, 3 ] ), Transformation( [ 3, 1, 5, 4, 5 ] ),
+[ Transformation( [ 1, 3, 1 ] ), Transformation( [ 1, 3, 3 ] ),
+ Transformation( [ 1, 5, 4, 4, 5 ] ), Transformation( [ 2, 2, 2 ] ),
+ Transformation( [ 3, 1, 3 ] ), Transformation( [ 3, 1, 5, 4, 5 ] ),
Transformation( [ 3, 3, 1 ] ), Transformation( [ 3, 3, 3 ] ) ]
gap> HomomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
[ Transformation( [ 2, 1 ] ), Transformation( [ 2, 1, 2 ] ) ]
@@ -278,7 +278,7 @@ gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
gap> MonomorphismsDigraphs(gr1, gr2);
-[ Transformation( [ 1, 5, 4, 4, 5 ] ),
+[ Transformation( [ 1, 5, 4, 4, 5 ] ),
Transformation( [ 3, 1, 5, 4, 5 ] ) ]
gap> MonomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
[ Transformation( [ 2, 1 ] ) ]
@@ -287,6 +287,34 @@ gap> MonomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
<#/GAPDoc>
+<#GAPDoc Label="SubdigraphsMonomorphisms">
+
+
+
+ A list of transformations.
+
+ These operations behave the same as and
+ , except they only return
+ injective homomorphisms with the following property: the (not
+ necessarily induced) subdigraphs defined by the images of these
+ monomorphisms are all of the subdigraphs of digraph2 that are
+ isomorphic to digraph1. Note that the subdigraphs of the previous
+ sentence are those obtained by applying the corresponding monomorphism to
+ the vertices and the edges of digraph1, and are therefore possibly
+ strictly contained in the induced subdigraph on the same vertex set.
+ SubdigraphsMonomorphisms(CompleteBipartiteDigraph(2, 2),
+> CompleteDigraph(4));
+[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 3, 1 ] ),
+ Transformation( [ 3, 4, 2, 1 ] ) ]
+gap> SubdigraphsMonomorphismsRepresentatives(
+> CompleteBipartiteDigraph(2, 2), CompleteDigraph(4));
+[ Transformation( [ 1, 3, 2 ] ) ]
+]]>
+
+
+<#/GAPDoc>
+
<#GAPDoc Label="DigraphEpimorphism">
@@ -324,17 +352,17 @@ gap> gr1 := DigraphReverse(ChainDigraph(4));
gap> gr2 := DigraphSymmetricClosure(CycleDigraph(3));
gap> EpimorphismsDigraphsRepresentatives(gr1, gr2);
-[ Transformation( [ 3, 1, 2, 1 ] ), Transformation( [ 3, 1, 2, 3 ] ),
+[ Transformation( [ 3, 1, 2, 1 ] ), Transformation( [ 3, 1, 2, 3 ] ),
Transformation( [ 2, 1, 2, 3 ] ) ]
gap> EpimorphismsDigraphs(gr1, gr2);
-[ Transformation( [ 1, 2, 1, 3 ] ), Transformation( [ 1, 2, 3, 1 ] ),
- Transformation( [ 1, 2, 3, 2 ] ), Transformation( [ 1, 3, 1, 2 ] ),
- Transformation( [ 1, 3, 2, 1 ] ), Transformation( [ 1, 3, 2, 3 ] ),
- Transformation( [ 2, 1, 2, 3 ] ), Transformation( [ 2, 1, 3, 1 ] ),
- Transformation( [ 2, 1, 3, 2 ] ), Transformation( [ 2, 3, 1, 2 ] ),
- Transformation( [ 2, 3, 1, 3 ] ), Transformation( [ 2, 3, 2, 1 ] ),
- Transformation( [ 3, 1, 2, 1 ] ), Transformation( [ 3, 1, 2, 3 ] ),
- Transformation( [ 3, 1, 3, 2 ] ), Transformation( [ 3, 2, 1, 2 ] ),
+[ Transformation( [ 1, 2, 1, 3 ] ), Transformation( [ 1, 2, 3, 1 ] ),
+ Transformation( [ 1, 2, 3, 2 ] ), Transformation( [ 1, 3, 1, 2 ] ),
+ Transformation( [ 1, 3, 2, 1 ] ), Transformation( [ 1, 3, 2, 3 ] ),
+ Transformation( [ 2, 1, 2, 3 ] ), Transformation( [ 2, 1, 3, 1 ] ),
+ Transformation( [ 2, 1, 3, 2 ] ), Transformation( [ 2, 3, 1, 2 ] ),
+ Transformation( [ 2, 3, 1, 3 ] ), Transformation( [ 2, 3, 2, 1 ] ),
+ Transformation( [ 3, 1, 2, 1 ] ), Transformation( [ 3, 1, 2, 3 ] ),
+ Transformation( [ 3, 1, 3, 2 ] ), Transformation( [ 3, 2, 1, 2 ] ),
Transformation( [ 3, 2, 1, 3 ] ), Transformation( [ 3, 2, 3, 1 ] ) ]
]]>
@@ -381,16 +409,16 @@ gap> EpimorphismsDigraphs(gr1, gr2);
gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;
gap> GeneratorsOfEndomorphismMonoid(gr);
-[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),
- IdentityTransformation, Transformation( [ 1, 2, 1 ] ),
- Transformation( [ 1, 2, 2 ] ), Transformation( [ 1, 1, 2 ] ),
+[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),
+ IdentityTransformation, Transformation( [ 1, 2, 1 ] ),
+ Transformation( [ 1, 2, 2 ] ), Transformation( [ 1, 1, 2 ] ),
Transformation( [ 1, 1, 1 ] ) ]
gap> GeneratorsOfEndomorphismMonoid(gr, 3);
-[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),
+[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 1 ] ),
IdentityTransformation ]
gap> gr := CompleteDigraph(3);;
gap> GeneratorsOfEndomorphismMonoid(gr);
-[ Transformation( [ 2, 3, 1 ] ), Transformation( [ 2, 1 ] ),
+[ Transformation( [ 2, 3, 1 ] ), Transformation( [ 2, 1 ] ),
IdentityTransformation ]
gap> GeneratorsOfEndomorphismMonoid(gr, [1, 2, 2]);
[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]
@@ -423,7 +451,7 @@ gap> GeneratorsOfEndomorphismMonoid(gr, [[1], [2, 3]]);
from digraph onto the complete digraph with n vertices if one
exists, else it returns fail.
- See also and
+ See also and
Note that a digraph with at least two vertices has a 2-colouring if and only
@@ -437,7 +465,7 @@ fail
gap> D := ChainDigraph(10);;
gap> t := DigraphColouring(D, 2);
Transformation( [ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 ] )
-gap> IsDigraphColouring(D, t);
+gap> IsDigraphColouring(D, t);
true
gap> DigraphGreedyColouring(D);
Transformation( [ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 ] )
@@ -448,42 +476,42 @@ Transformation( [ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 ] )
<#GAPDoc Label="DigraphGreedyColouring">
-
-
-
A transformation, or fail.
A proper colouring of a digraph is a labelling of its vertices in
- such a way that adjacent vertices have different labels. Note that a digraph
- with loops () does not have any proper
+ such a way that adjacent vertices have different labels. Note that a digraph
+ with loops () does not have any proper
colouring.
-
- If digraph is a digraph and order is a dense list consisting
- of all of the vertices of digraph (in any order), then
+
+ If digraph is a digraph and order is a dense list consisting
+ of all of the vertices of digraph (in any order), then
DigraphGreedyColouring
uses a greedy algorithm with the specified order to obtain some proper
colouring of digraph, which may not use the minimal number of
colours.
-
- If digraph is a digraph and func is a function whose argument
- is a digraph, and that returns a dense list order, then
+
+ If digraph is a digraph and func is a function whose argument
+ is a digraph, and that returns a dense list order, then
DigraphGreedyColouring(digraph, func) returns
DigraphGreedyColouring(digraph, func(digraph)).
- If the optional second argument (either a list or a function), is not
- specified, then is used by default.
+ If the optional second argument (either a list or a function), is not
+ specified, then is used by default.
-
+
See also
- .
@@ -502,14 +530,14 @@ Transformation( [ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 ] )
A list of the vertices.
- DigraphWelshPowellOrder returns a list of all of the vertices of
- the digraph digraph ordered according to the sum of the number of
- out- and in-neighbours, from highest to lowest.
+ DigraphWelshPowellOrder returns a list of all of the vertices of
+ the digraph digraph ordered according to the sum of the number of
+ out- and in-neighbours, from highest to lowest.
DigraphWelshPowellOrder(Digraph([[4], [9], [9], [],
-> [4, 6, 9], [1], [], [],
+gap> DigraphWelshPowellOrder(Digraph([[4], [9], [9], [],
+> [4, 6, 9], [1], [], [],
> [4, 5], [4, 5]]));
[ 5, 9, 4, 1, 6, 10, 2, 3, 7, 8 ]
]]>
@@ -567,14 +595,14 @@ gap> D2 := CycleDigraph(5);
gap> EmbeddingsDigraphsRepresentatives(D1, D2);
[ Transformation( [ 1, 3, 3 ] ), Transformation( [ 1, 4, 3, 4 ] ) ]
gap> EmbeddingsDigraphs(D1, D2);
-[ Transformation( [ 1, 3, 3 ] ), Transformation( [ 1, 4, 3, 4 ] ),
- Transformation( [ 2, 4, 4, 5, 1 ] ),
- Transformation( [ 2, 5, 4, 5, 1 ] ),
- Transformation( [ 3, 1, 5, 1, 2 ] ),
- Transformation( [ 3, 5, 5, 1, 2 ] ),
- Transformation( [ 4, 1, 1, 2, 3 ] ),
- Transformation( [ 4, 2, 1, 2, 3 ] ),
- Transformation( [ 5, 2, 2, 3, 4 ] ),
+[ Transformation( [ 1, 3, 3 ] ), Transformation( [ 1, 4, 3, 4 ] ),
+ Transformation( [ 2, 4, 4, 5, 1 ] ),
+ Transformation( [ 2, 5, 4, 5, 1 ] ),
+ Transformation( [ 3, 1, 5, 1, 2 ] ),
+ Transformation( [ 3, 5, 5, 1, 2 ] ),
+ Transformation( [ 4, 1, 1, 2, 3 ] ),
+ Transformation( [ 4, 2, 1, 2, 3 ] ),
+ Transformation( [ 5, 2, 2, 3, 4 ] ),
Transformation( [ 5, 3, 2, 3, 4 ] ) ]
]]>
@@ -583,7 +611,7 @@ gap> EmbeddingsDigraphs(D1, D2);
<#GAPDoc Label="IsDigraphHomomorphism">
-
EmbeddingsDigraphs(D1, D2);
If col1 and col2, or col, are given, then they must
- represent vertex colourings; see
-
+ represent vertex colourings; see
+
for details of the permissible values for these argument. The
homomorphism must then also have the property:
-
+
-
col[i] = col[i ^ x] for all vertices i of digraph,
@@ -647,7 +675,7 @@ gap> EmbeddingsDigraphs(D1, D2);
See also .
-
+
src := Digraph([[1], [1, 2], [1, 3]]);
@@ -732,13 +760,13 @@ false]]>
<#GAPDoc Label="IsDigraphColouring">
-
true or false.
- The operation IsDigraphColouring verifies whether or not
- the list list describes a proper colouring of the digraph
- digraph.
+ The operation IsDigraphColouring verifies whether or not
+ the list list describes a proper colouring of the digraph
+ digraph.
A list list describes a proper colouring of a digraph
@@ -750,11 +778,11 @@ false]]>
A transformation t describes a proper colouring of a digraph
digraph, if ImageListOfTransformation(t,
- DigraphNrVertices(digraph)) is a proper colouring of
+ DigraphNrVertices(digraph)) is a proper colouring of
digraph.
See also .
-
+
D := JohnsonDigraph(5, 3);
@@ -778,7 +806,7 @@ true
true or false.
- The operation DigraphsRespectsColouring verifies whether or not
+ The operation DigraphsRespectsColouring verifies whether or not
the permutation or transformation x respects the vertex colourings
col1 and col2 of the digraphs src and range.
That is, DigraphsRespectsColouring returns true if and only if for
@@ -816,14 +844,14 @@ false
MaximalCommonSubdigraph(PetersenGraph(), CompleteDigraph(10));
-[ ,
+[ ,
IdentityTransformation, IdentityTransformation ]
gap> MaximalCommonSubdigraph(PetersenGraph(),
> DigraphSymmetricClosure(CycleDigraph(5)));
-[ ,
+[ ,
IdentityTransformation, IdentityTransformation ]
gap> MaximalCommonSubdigraph(NullDigraph(0), CompleteDigraph(10));
-[ , IdentityTransformation,
+[ , IdentityTransformation,
IdentityTransformation ]
]]>
@@ -840,22 +868,22 @@ gap> MaximalCommonSubdigraph(NullDigraph(0), CompleteDigraph(10));
M of D1 and D2 with the minimum number of vertices.
So M is a digraph into which both D1 and D2 embed and
has the smallest number of vertices among such digraphs.
-
- It returns a list [M, t1, t2] where M is the minimal common
+
+ It returns a list [M, t1, t2] where M is the minimal common
superdigraph and t1, t2 are transformations embedding D1 and
D2 respectively into M.
MinimalCommonSuperdigraph(PetersenGraph(), CompleteDigraph(10));
-[ ,
- IdentityTransformation,
+[ ,
+ IdentityTransformation,
Transformation( [ 1, 2, 11, 12, 13, 14, 15, 16, 17, 18, 11, 12, 13,
14, 15, 16, 17, 18 ] ) ]
gap> MinimalCommonSuperdigraph(PetersenGraph(),
> DigraphSymmetricClosure(CycleDigraph(5)));
-[ ,
+[ ,
IdentityTransformation, IdentityTransformation ]
gap> MinimalCommonSuperdigraph(NullDigraph(0), CompleteDigraph(10));
-[ ,
+[ ,
IdentityTransformation, IdentityTransformation ]
]]>
@@ -868,7 +896,7 @@ gap> MinimalCommonSuperdigraph(NullDigraph(0), CompleteDigraph(10));
A transformation, or fail.
If L1 and L2 are lattice digraphs ( returns true, then
+ Prop="IsLatticeDigraph"/> returns true, then
LatticeDigraphEmbedding returns a single injective between L1 and L2, with
the property that it is a lattice homomorphism. If no such
@@ -897,7 +925,7 @@ fail
<#GAPDoc Label="IsLatticeHomomorphism">
-
@@ -935,7 +963,7 @@ fail
IsLatticeEmbedding returns true if the permutation
or transformation map is an injective lattice homomorphism from
the lattice digraph L1 to the lattice digraph L2.
- The function IsLatticeMonomorphism is a synonym of
+ The function IsLatticeMonomorphism is a synonym of
IsLatticeEmbedding.
diff --git a/doc/z-chap6.xml b/doc/z-chap6.xml
index 71714bd61..2cbdf04ea 100644
--- a/doc/z-chap6.xml
+++ b/doc/z-chap6.xml
@@ -20,7 +20,7 @@ from} $E_a$ \emph{to} $E_b$. In this case we say that $E_a$ and $E_b$ are
&nauty; (via &NautyTracesInterface;) to calculate canonical labellings and
automorphism groups of digraphs; see and for more details about &bliss; and &nauty;,
- respectively.
+ respectively.
<#Include Label="DigraphsUseNauty">
<#Include Label="AutomorphismGroupDigraph">
@@ -65,6 +65,7 @@ from} $E_a$ \emph{to} $E_b$. In this case we say that $E_a$ and $E_b$ are
<#Include Label="EmbeddingsDigraphs">
<#Include Label="IsDigraphHomomorphism">
<#Include Label="IsDigraphEmbedding">
+ <#Include Label="SubdigraphsMonomorphisms">
<#Include Label="DigraphsRespectsColouring">
<#Include Label="GeneratorsOfEndomorphismMonoid">
<#Include Label="DigraphColouring">
diff --git a/gap/cliques.gi b/gap/cliques.gi
index 56f58f3ca..12a86617a 100644
--- a/gap/cliques.gi
+++ b/gap/cliques.gi
@@ -10,26 +10,6 @@
#############################################################################
##
-BindGlobal("AddOrbitToHashMap",
-function(G, set, hashmap)
- local gens, o, im, pt, g;
-
- gens := GeneratorsOfGroup(G);
- o := [set];
- Assert(1, not set in hashmap);
- hashmap[set] := true;
- for pt in o do
- for g in gens do
- im := OnSets(pt, g);
- if not im in hashmap then
- hashmap[im] := true;
- Add(o, im);
- fi;
- od;
- od;
- return o;
-end);
-
InstallMethod(CliqueNumber, "for a digraph", [IsDigraph],
D -> Maximum(List(DigraphMaximalCliquesReps(D), Length)));
@@ -570,7 +550,7 @@ function(arg...)
orbits := HashMap();
for c in cliques do
if not c in orbits then
- AddOrbitToHashMap(G, c, orbits);
+ DIGRAPHS_AddOrbitToHashMap(G, c, orbits);
fi;
od;
out := Keys(orbits);
@@ -729,7 +709,7 @@ function(digraph, hook, user_param, limit, include, exclude, max, size, reps)
new_found := 0;
if not clique in found_orbits then
- orbit := AddOrbitToHashMap(group, clique, found_orbits);
+ orbit := DIGRAPHS_AddOrbitToHashMap(group, clique, found_orbits);
n := Length(orbit);
if invariant_include and invariant_exclude then
@@ -915,7 +895,7 @@ function(D, hook, param, lim, inc, exc, max, size, reps, inc_var, exc_var)
num := num + 1;
return;
elif not c in found_orbits then
- orb := AddOrbitToHashMap(grp, c, found_orbits);
+ orb := DIGRAPHS_AddOrbitToHashMap(grp, c, found_orbits);
n := Length(orb);
if invariant then # we're not just looking for orbit reps, but inc and
diff --git a/gap/grahom.gd b/gap/grahom.gd
index 7c0b7ea41..b18ecce70 100644
--- a/gap/grahom.gd
+++ b/gap/grahom.gd
@@ -21,6 +21,11 @@ DeclareOperation("MonomorphismsDigraphs", [IsDigraph, IsDigraph]);
DeclareOperation("MonomorphismsDigraphsRepresentatives",
[IsDigraph, IsDigraph]);
+DeclareOperation("SubdigraphsMonomorphismsRepresentatives",
+ [IsDigraph, IsDigraph]);
+DeclareOperation("SubdigraphsMonomorphisms",
+ [IsDigraph, IsDigraph]);
+
DeclareOperation("DigraphEpimorphism", [IsDigraph, IsDigraph]);
DeclareOperation("EpimorphismsDigraphs", [IsDigraph, IsDigraph]);
DeclareOperation("EpimorphismsDigraphsRepresentatives", [IsDigraph, IsDigraph]);
diff --git a/gap/grahom.gi b/gap/grahom.gi
index 34a2f393d..d211c6b19 100644
--- a/gap/grahom.gi
+++ b/gap/grahom.gi
@@ -330,6 +330,79 @@ function(D1, D2)
return Union(List(aut, x -> hom * x));
end);
+InstallMethod(SubdigraphsMonomorphismsRepresentatives,
+"for a digraph and a digraph", [IsDigraph, IsDigraph],
+function(H, G)
+ local GV, HN, map, reps, result, set, rep;
+
+ GV := DigraphVertices(G);
+ HN := DigraphNrVertices(H);
+
+ map := HashMap();
+ reps := [];
+
+ for set in Combinations(GV, HN) do
+ if not set in map then
+ Add(reps, set);
+ DIGRAPHS_AddOrbitToHashMap(AutomorphismGroup(G), set, map);
+ fi;
+ od;
+
+ result := [];
+ for rep in reps do
+ map :=
+ HomomorphismDigraphsFinder(H, # domain
+ G, # range
+ fail, # hook
+ [], # user_param
+ 1, # max_results
+ HN, # hint (i.e. rank)
+ true, # injective
+ rep, # image
+ [], # partial_map
+ fail, # colors1
+ fail, # colors2
+ DigraphWelshPowellOrder(H));
+ if Length(map) <> 0 then
+ Add(result, map[1]);
+ fi;
+ od;
+ return result;
+end);
+
+InstallMethod(SubdigraphsMonomorphisms, "for a digraph and a digraph",
+[IsDigraph, IsDigraph],
+function(H, G)
+ local ApplyHomomorphismNC, reps, AG, result, sub, o, x, rep, i;
+
+ ApplyHomomorphismNC := function(D1, D2, t)
+ local old, new, v, im;
+ old := OutNeighbours(D1);
+ new := List([1 .. DigraphNrVertices(D2)], x -> []);
+ for v in DigraphVertices(D1) do
+ im := v ^ t;
+ if not IsBound(new[im]) then
+ new[im] := [];
+ fi;
+ Append(new[im], OnTuples(old[v], t));
+ od;
+ return DigraphNC(new);
+ end;
+
+ reps := SubdigraphsMonomorphismsRepresentatives(H, G);
+ AG := AutomorphismGroup(G);
+ result := [];
+ for rep in reps do
+ sub := ApplyHomomorphismNC(H, G, rep);
+ o := Enumerate(Orb(AG, sub, OnDigraphs, rec(schreier := true)));
+ for i in [1 .. Length(o)] do
+ x := EvaluateWord(GeneratorsOfGroup(AG), TraceSchreierTreeForward(o, i));
+ Add(result, rep * x);
+ od;
+ od;
+ return result;
+end);
+
################################################################################
# SURJECTIVE HOMOMORPHISMS
diff --git a/gap/orbits.gd b/gap/orbits.gd
index c41743131..d36b27586 100644
--- a/gap/orbits.gd
+++ b/gap/orbits.gd
@@ -12,6 +12,7 @@ DeclareGlobalFunction("DIGRAPHS_Orbits");
DeclareGlobalFunction("DIGRAPHS_TraceSchreierVector");
DeclareGlobalFunction("DIGRAPHS_EvaluateWord");
DeclareAttribute("DIGRAPHS_Stabilizers", IsDigraph, "mutable");
+DeclareGlobalFunction("DIGRAPHS_AddOrbitToHashMap");
DeclareAttribute("DigraphGroup", IsDigraph);
DeclareAttribute("DigraphOrbits", IsDigraph);
diff --git a/gap/orbits.gi b/gap/orbits.gi
index eefc39e5c..e1c6cbf08 100644
--- a/gap/orbits.gi
+++ b/gap/orbits.gi
@@ -68,6 +68,26 @@ function(G, domain)
return rec(orbits := orbs, schreier := sch, lookup := lookup);
end);
+InstallGlobalFunction(DIGRAPHS_AddOrbitToHashMap,
+function(G, set, hashmap)
+ local gens, o, im, pt, g;
+
+ gens := GeneratorsOfGroup(G);
+ o := [set];
+ Assert(1, not set in hashmap);
+ hashmap[set] := true;
+ for pt in o do
+ for g in gens do
+ im := OnSets(pt, g);
+ if not im in hashmap then
+ hashmap[im] := true;
+ Add(o, im);
+ fi;
+ od;
+ od;
+ return o;
+end);
+
InstallMethod(RepresentativeOutNeighbours, "for a digraph by out-neighbours",
[IsDigraphByOutNeighboursRep],
function(D)
diff --git a/gap/utils.gi b/gap/utils.gi
index e978cecfe..0751fd6fc 100644
--- a/gap/utils.gi
+++ b/gap/utils.gi
@@ -262,7 +262,8 @@ function(arg...)
s := InputTextString(ex[1]);
start_time := IO_gettimeofday();
- test := Test(s, rec(ignoreComments := false,
+ test := Test(s, rec(compareFunction := "uptowhitespace",
+ ignoreComments := false,
width := 72,
EQ := EQ,
reportDiff := Ignore,
diff --git a/tst/standard/grahom.tst b/tst/standard/grahom.tst
index f2aea9a35..b1a3106b1 100644
--- a/tst/standard/grahom.tst
+++ b/tst/standard/grahom.tst
@@ -2739,6 +2739,26 @@ false
gap> IsLatticeEpimorphism(D, D, (2, 3));
true
+# SubdigraphsMonomorphisms
+gap> SubdigraphsMonomorphisms(CompleteBipartiteDigraph(2, 2),
+> CompleteDigraph(4));
+[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 3, 1 ] ),
+ Transformation( [ 3, 4, 2, 1 ] ) ]
+gap> D := DigraphFromGraph6String("D^{");
+
+gap> SubdigraphsMonomorphisms(CompleteDigraph(4), D);
+[ Transformation( [ 1, 3, 4, 5, 5 ] ), Transformation( [ 2, 3, 4, 5, 5 ] ) ]
+gap> Length(SubdigraphsMonomorphisms(CompleteDigraph(4), CompleteDigraph(12)));
+495
+gap> D := DigraphFromGraph6String("K^vMMF@oM?{@");
+
+gap> Length(SubdigraphsMonomorphisms(CompleteMultipartiteDigraph([2, 5]), D));
+252
+gap> D := DigraphFromGraph6String("O^vMMF@oM?w@o@o?w?N?@");
+
+gap> Length(SubdigraphsMonomorphisms(CompleteMultipartiteDigraph([2, 7]), D));
+3432
+
# DIGRAPHS_UnbindVariables
gap> Unbind(D);
gap> Unbind(D1);