-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlecture8.tex
506 lines (424 loc) · 18.2 KB
/
lecture8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
%Template
%Copyright (C) 2019 Patrick Diehl
%
%This program is free software: you can redistribute it and/or modify
%it under the terms of the GNU General Public License as published by
%the Free Software Foundation, either version 3 of the License, or
%(at your option) any later version.
%This program is distributed in the hope that it will be useful,
%but WITHOUT ANY WARRANTY; without even the implied warranty of
%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%GNU General Public License for more details.
%You should have received a copy of the GNU General Public License
%along with this program. If not, see <http://www.gnu.org/licenses/>.
\providecommand\classoption{12pt}
\documentclass[\classoption]{beamer}
\input{./template/packages}
\input{template/variables.tex}
\usepackage{mathtools}
\pgfplotsset{compat=1.12}
% frame slide
\title{\coursename}
\subtitle{Lecture 8: Introduction to bond-based peridynamics}
%\author{\href{}{}}
%\institute {
% \href{}{\tt \scriptsize \today}
%}
\date {
\tiny \url{\courseurl}
\vspace{2cm}
\doclicenseThis
}
\usetikzlibrary{positioning,arrows}
\tikzset{
arrow/.style={-latex, shorten >=1ex, shorten <=1ex}
}
\newcommand{\R}{\mathbb{R}}
\newcommand{\ftime}{[0,T]}
\newcommand{\args}{(t,x(t,X')-x(t,X),X'-X)}
\newcommand{\argsd}{(t,x(t,X_j)-x(t,X_i),X_j-X_i)}
\newcommand{\x}{\Vert X'-X \Vert}
\newcommand{\xd}{\Vert X_j-X_i \Vert}
\newcommand{\J}{J\left(\frac{\x}{\epsilon}\right)}
\newcommand{\dx}{{\Delta x}}
\newcommand{\ratio}{\sfrac{\delta}{\dx}}
%Sparse grid stuff
\newcommand{\Model}{{\mathcal{M}}}
\newcommand{\vl}{{\vec{l}}}
\newcommand{\vi}{{\vec{i}}}
\newcommand{\vli}{{\vl, \vi}}
\newcommand{\vx}{{\mathbf{z}}}
\newcommand{\unitd}{{[0, 1]^d}}
\newcommand{\Real}{{\mathbb{R}}}
\newcommand{\Order}{{\mathcal{O}}}
\newcommand{\Il}{{\mathcal{I}_\vl}}
\newcommand{\level}{{\ell}}
\newcommand{\cV}{{\mathcal{V}}}
\newcommand{\cW}{{\mathcal{W}}}
\begin{document} {
\setbeamertemplate{footline}{}
\frame {
\titlepage
}
}
\frame{
\tableofcontents
}
\AtBeginSection[]{
\begin{frame}
\vfill
\centering
\begin{beamercolorbox}[sep=8pt,center,shadow=true,rounded=true]{title}
\usebeamerfont{title}\insertsectionhead\par%
\end{beamercolorbox}
\vfill
\end{frame}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Reminder}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Lecture 8}
\begin{block}{What you should know from last lecture}
\begin{itemize}
\item Lambda functions
\item Asynchronous programming
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Classical continuum mechanics}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{}
\begin{figure}[!htbp]
\begin{tikzpicture}
\draw[fill=azure, opacity=0.5](1,1) circle (1);
\node at (1,2.35) {{\small $\Omega_0$}};
\draw[fill=azure](1,1) circle (0.075);
\node at (1,0.725) {{\small $X$}};
\node at (6,1) {\includegraphics[scale=1.25]{images/deformation.pdf}};
\node at (6,2.35) {{\small $\Omega(t)$}};
\draw[fill=azure](6,0.725) circle (0.075);
\node at (6,0.45) {{\small $x(t,X)$}};
\node at (3.75,2.45) {{\small $\phi:\Omega_0\rightarrow \R^3$}};
\draw [arrow, bend angle=45, bend left] (1.95,1.25) to (5.8,1);
\end{tikzpicture}
\caption[The continuum in the reference configuration $\Omega_0$ and after the deformation $\phi : \Omega_0 \rightarrow \R^3$ in the current configuration $\Omega(t)$ at time $t$.]{The continuum in the reference configuration $\Omega_0$ and after the deformation $\phi : \Omega_0 \rightarrow \R^3$ with $\det(\text{grad}\;\phi) > 0$ in the current configuration $\Omega(t)$ at time $t$.}
\label{fig::cpp:01}
\end{figure}
\begin{block}{Prerequisites}
\begin{itemize}
\item A \index{material point}{material point} in the continuum is identified with its position $X \in \R^3$ in the so-called reference configuration $\Omega_0 \subset \R^3$.
\item The \index{configuration! reference}{reference configuration} $\Omega_0$ is refers to the shape of the continuum at rest with no internal forces.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{}
\begin{block}{Prerequisites}
\begin{itemize}
\item The deformation $\phi:[0,T]\times\R^3\rightarrow\R^3$ of a material point $X$ in the reference configuration $\Omega_0$ to the so-called \index{configuration! current}{current configuration} $\Omega(t)$ is given by
\begin{align*}
\phi(t,X) := id(X) + u(t,X) = x(t,X)
\end{align*}
\item where $u:[0,T]\times\R^3\rightarrow\R^3$ refers to the \index{displacement}{displacement}
\begin{align*}
u(t,X):= x(t,X) - X\,\text{.}
\end{align*}
\item The stretch $s:[0,T]\times\R^3\times\R^3\rightarrow\R^3$ between the material point $X$ and the material point $X'$ after the deformation $\phi$ in the configuration $\Omega(t)$ is defined by
\begin{align*}
s(t,X,X') := \phi(t,X') - \phi(t,X) \,\text{.}
\end{align*}
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{Notice}
We just covered the prerequisites of classical continuum mechanics which are necessary to introduce the peridynamic theory. For more details, we refer to \\
\begin{itemize}
\item Liu, I-Shih. Continuum mechanics. Springer Science \& Business Media, 2013.
\item Gurtin, Morton E. An introduction to continuum mechanics. Vol. 158. Academic press, 1982.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Peridyanmics}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{What is peridynamics}
\begin{itemize}
\item A non-local generalization of continuum mechanics
\item Has a focus on discontinuous displacement as they arise in fracture mechanics.
\item Models crack and fractures on a mesoscopic scale using Newton's second law (force equals mass times acceleration)
\begin{align*}
F = m \cdot a = m \cdot \ddot X
\end{align*}
\end{itemize}
\small
\begin{itemize}
\item Silling, Stewart A. "Reformulation of elasticity theory for discontinuities and long-range forces." Journal of the Mechanics and Physics of Solids 48.1 (2000): 175-209.
\item Silling, Stewart A., and Ebrahim Askari. "A meshfree method based on the peridynamic model of solid mechanics." Computers \& structures 83.17-18 (2005): 1526-1535.
\end{itemize}
\end{frame}
\begin{frame}{Principle I}
\begin{figure}[!htbp]
\begin{tikzpicture}
\draw[fill=azure, opacity=0.5](0,0) circle (1);
\node at (0,2.35) {{\small $\Omega_0$}};
\draw[fill=azure](0,0) circle (2pt);
\node at (0,-0.25) {{\small $X$}};
\draw (0,0) ellipse (3cm and 2cm);
\draw [->] (0,0) to (0.95,0.225);
\node at (1.125,0.25) {{\tiny $\delta$}};
\node at (1.1,0.8) {{\tiny $B_\delta(X)$}};
\draw (0,0.5) circle (2pt);
\draw (0,-0.5) circle (2pt);
\draw (0.5,0.0) circle (2pt);
\draw (-0.5,0.0) circle (2pt);
\end{tikzpicture}
\caption{The continuum in the reference configuration $\Omega_0$ and the interaction zone $B_\delta(X)$ for material point $X$ with the horizon $\delta$.}
\label{fig::cpp:02}
\end{figure}
\end{frame}
\begin{frame}{Principle II}
\begin{block}{Acceleration $a:\ftime\times\R^3\rightarrow\R^3$}
of a material point at position $X$ at time $t$ is given by
\begin{align*}
\rho(X)a(t,X)&:= \\
&\int\limits_{B_\delta(X)} f\left(t,x(t,X')-x(t,X), X'-X\right)dX' + b(t,X)\,\text{,}
\label{eq::cpp:01}
\end{align*}
\end{block}
where $f:[0,T]\times\R^3\times\R^3\rightarrow\R^3$ denotes a \index{pair-wise force function}{pair-wise force function}, $\rho(X)$ is the mass density and $b:[0,T]\times\mathbb{R}^3\rightarrow\mathbb{R}^3$ the external force.
\end{frame}
\begin{frame}{Important fundamental assumptions}
\begin{enumerate}
\item The medium is continuous (equal to a continuous mass density field exists)
\item Internal forces are contact forces (equal to that material points only interact if they are separated by zero distance.
\item Conservation laws of mechanics apply (conservation of mass, linear momentum, and angular momentum).
\end{enumerate}
\begin{block}{Conservation of linear momentum}
\vspace*{-0.5cm}
\begin{align*}
&f(t,-(x(t,X')-x(t,X)),-(X'-X))= \\ &-f(t,x(t,X')-x(t,X), X'-X)
\end{align*}
\end{block}
\vspace*{-0.5cm}
\begin{block}{Conservation of angular momentum}
\vspace*{-0.5cm}
\begin{align*}
(x(t,X')-x(t,X)+X'-X) \times f\left(t,x(t,X')-x(t,X), X'-X\right) = 0
\end{align*}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Discretization}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{EMU nodal discretization (EMU ND)}
\begin{block}{Assumptions}
\begin{itemize}
\item All material points $X$ are placed at the nodes $\mathbf{X}:=\lbrace X_i \in \mathbb{R}^3\vert i=1,\ldots,n\rbrace$ of a regular grid in the reference configuration $\Omega_0$.
\item The discrete \index{nodal spacing}{nodal spacing} $\dx$ between $X_i$ and $X_j$ is defined as $\dx = \Vert X_j - X_i \Vert$.
\item The discrete interaction zone $B_\delta(X_i)$ of $X_i$ is given by $B_\delta(X_i):=\lbrace X_j \vert \,\vert\vert X_j-X_i\vert\vert \leq \delta\rbrace$.
\item For all material points at the nodes $\mathbf{X}:=\lbrace X_i \in \mathbb{R}^3\vert i=1,\ldots,n\rbrace$ a surrounding volume $\mathbf{V}:=\lbrace\ \mathbf{V}_i \in \mathbb{R}\vert i=1,\ldots,n\rbrace$ is assumed.
\item These volumes are non overlapping $\mathbf{V}_i \cap \mathbf{V}_j = \emptyset$ and recover the volume of the volume of the reference configuration $\sum_{i=1}^n \mathbf{V}_i = \mathbf{V}_{\Omega_0}$.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{Discrete equation of motion}
\begin{center}
\begin{tikzpicture}
\shade[ball color = azure] (2,2) circle(1pt);
\shade[ball color = asparagus] (1,1.5) circle(1pt);
\shade[ball color = asparagus] (1,2.0) circle(1pt);
\shade[ball color = asparagus] (1,2.5) circle(1pt);
\shade[ball color = asparagus] (3,1.5) circle(1pt);
\shade[ball color = asparagus] (3,2.0) circle(1pt);
\shade[ball color = asparagus] (3,2.5) circle(1pt);
\shade[ball color = asparagus] (1.5,1) circle(1pt);
\shade[ball color = asparagus] (2.0,1) circle(1pt);
\shade[ball color = asparagus] (2.5,1.) circle(1pt);
\shade[ball color = asparagus] (1.5,3) circle(1pt);
\shade[ball color = asparagus] (2.0,3) circle(1pt);
\shade[ball color = asparagus] (2.5,3) circle(1pt);
\foreach \x in {0.5,3.5}
\foreach \y in {0.5,1,1.5,2,2.5,3,3.5}
\shade[ball color = white](\x,\y) circle (1pt);
\foreach \x in {1,1.5,2,2.5,3}
\foreach \y in {0.5,3.5}
\shade[ball color = white](\x,\y) circle (1pt);
\foreach \x in {1.5,2,2.5}
\foreach \y in {1.5,2.5}
\shade[ball color = white](\x,\y) circle (1pt);
\foreach \x in {1,3}
\foreach \y in {1,3}
\shade[ball color = white](\x,\y) circle (1pt);
\shade[ball color = white](1.5,2) circle (1pt);
\shade[ball color = white](2.5,2) circle (1pt);
\foreach \x in {0.5,1,1.5,2,2.5,3,3.5,4.0}
\draw(\x-0.25,0.25) -- (\x-0.25,4-0.25);
\foreach \x in {0.5,1,1.5,2,2.5,3,3.5,4.0}
\draw(0.25,\x-0.25) -- (4-0.25,\x-0.25);
\draw(2,2) circle(30pt);
\node at (2.05,1.85) {\tiny{$X_i$}};
\end{tikzpicture}
\end{center}
\begin{align*}
\rho(X_i)a(t,X_i)&=\sum\limits_{X_j\in B_\delta(X_i)} \\ &f\left(t,x(t,X_j)-x(t,X_i), X_j-X_i\right)d\mathbf{V}_j + b(t,X_i)
\end{align*}
\end{frame}
\begin{frame}{}
Note that we computed the acceleration of a material point $a(t,X)$ and we need to compute the displacement $u(t,X)$ by a
\begin{block}{Central difference scheme}
\begin{align*}
u&(t+1,X) = \\ 2 u(t,X) &- u(t-1,X) + \Delta t^2 \left(\sum\limits_{X_j\in B_\delta(X_i)} f(t,X_i,X_j)+b(t,X)\right)
\end{align*}
\end{block}
to compute the actual displacement $x(t,X):= id(X)+ u(t,X)$.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Material models}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Prototype Microelastic Brittle (PMB) model}
In this model the assumption is made that the pair-wise force $f$ only depends on the relative normalized bond stretch $s:[0,T]\times\mathbb{R}^3\times\mathbb{R}^3\rightarrow\mathbb{R}$
\begin{align*}
s(t,x(t,X')&-x(t,X),X'-X):= \\ &\frac{\vert\vert x(t,X')-x(t,X))\vert\vert - \vert\vert X'-X\vert\vert}{\vert\vert X'-X\vert\vert}\,\text{.}
\end{align*}
where
\begin{itemize}
\item $X'-X$ is the vector between the material points in the reference configuration,
\item $x(t,X')-x(t,X)$ is the vector between the material point in the current configuration.
\end{itemize}
\end{frame}
\begin{frame}{Pair-wise bond force $f$}
\begin{align*}
f(t,x(t,X')&-x(t,X),X'-X):= \notag\\ & \textcolor{blue}{c} \, s(t,x(t,X')-x(t,X),X'-X)\frac{x(t,X')-x(t,X)}{\Vert x(t,X')-x(t,X)\Vert}
\end{align*}
with a material dependent \index{stiffness constant}{stiffness constant} $\textcolor{azure}{c}$.
\begin{block}{More details:}
\small
\begin{itemize}
\item Silling, Stewart A., and Ebrahim Askari. "A meshfree method based on the peridynamic model of solid mechanics." Computers \& structures 83.17-18 (2005): 1526-1535.
\item Parks, Michael L., et al. "Implementing peridynamics within a molecular dynamics code." Computer Physics Communications 179.11 (2008): 777-783.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{}
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[xlabel=$s$, axis lines=middle,ticks=none ,grid=major,ymax=0.75, ylabel=$f$]
\addplot[domain=0:1,thick] {0.5 * x};
\draw[awesome,thick] (0.4,0.2) -- (0.6,0.2);
\draw[awesome,thick] (0.6,0.2) -- (0.6,0.3);
\node at (0.525,0.225) {{\small \textcolor{azure}{$c$}}};
\end{axis}
\end{tikzpicture}
\caption[Sketch of the pair-wise linear valued force function $f$ with the stiffness constant $c$ as slope.]{Sketch of the pair-wise linear valued force function $f$ with the stiffness constant \textcolor{azure}{$c$} as slope.}
\label{fig::force::sketch}
\end{figure}
\begin{center}
\textcolor{awesome}{Note that there is no notion of failure/damage in the current material model.}
\end{center}
\end{frame}
\begin{frame}{Introducing failure}
Introduce a scalar valued history dependent function $\mu:[0,T]\times\mathbb{R}^3\times\mathbb{R}^3\rightarrow\mathbb{N}$ to the computation of the pair-wise force
\begin{align*}
&f(t,x(t,X')-x(t,X),X'-X):= \notag\\ & \textcolor{azure}{c} s(t,x(t,X')-x(t,X),X'-X) \\&\mu\args \frac{x(t,X')-x(t,X)}{\Vert x(t,X')-x(t,X)\Vert}\,\text{.}
\end{align*}
with
\begin{align}
\mu(t,x(t,X')&-x(t,X),X'-X):= \\&
\left\{
\begin{aligned}
& 1 \quad s(t,x(t,X')-x(t,X),X'-X) < \textcolor{azure}{s_{c}} \\
%& \qquad -\alpha s_\text{smin}(t') \forall 0 \leq t' \leq t
%\\[1ex]
& 0 \quad \text{otherwise}
\end{aligned}
\right.
\end{align}
\end{frame}
\begin{frame}{}
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[xlabel=$s$, axis lines=middle ,grid=major,ymax=0.75, ylabel=$f$,xtick={1}, xticklabels={\textcolor{azure}{$s_c$}},yticklabels={,,}]
\addplot[domain=0:1,thick] {0.5 * x};
\addplot[domain=1:1.5,thick] {0 * x};
\draw[awesome,thick] (0.4,0.2) -- (0.6,0.2);
\draw[awesome,thick] (0.6,0.2) -- (0.6,0.3);
%\draw[awesome,thick,dashed] (1,0) -- (1,0.5);
\node at (0.525,0.225) {{\small \textcolor{azure}{$c$}}};
\end{axis}
\end{tikzpicture}
\caption[Sketch of the pair-wise linear valued force function $f$ with the stiffness constant $c$ as slope and the critical bond stretch $s_c$.]{Sketch of the pair-wise linear valued force function $f$ with the stiffness constant \textcolor{azure}{$c$} as slope and the critical bond stretch \textcolor{azure}{$s_c$}.}
\label{fig::force::sketch::critical}
\end{figure}
\end{frame}
\begin{frame}{Definition of damage}
With the scalar valued history dependent function $\mu$ the notion of damage $d(t,X):[0,T]\times\R^3\rightarrow\R$ can be introduced via
\begin{align*}
d(t,X):= 1- \frac{\displaystyle\int\limits_{B_\delta(X)}\mu\args dX'}{\displaystyle\int\limits_{B_\delta(X)}dX'}\,\text{.}
\label{eq::damage:nodal}
\end{align*}
To express damage in words, it is the ratio of the active (non-broken) bonds and the amount of bonds in the reference configuration within the neighborhood.
\end{frame}
\begin{frame}{Relation to classical continuum mechanics}
\begin{block}{Stiffness constant}
\begin{align*}
c = \frac{18K}{\pi\delta}
\end{align*}
\end{block}
\vspace{-0.25cm}
\begin{block}{Critical bond stretch}
\begin{align*}
s_c = \sqrt{\frac{5G}{9K\delta}}
\end{align*}
\end{block}
\vspace{-0.25cm}
With
\begin{itemize}
\item $K$ is the bulk modulus
\item $G$ is the energy release rat
\end{itemize}
\end{frame}
\begin{frame}{Notice}
We just covered the basics of peridynamics which are necessary to implement peridyanmics for the course project. Fore more details we refer to
\begin{itemize}
\item Bobaru, Florin, et al., eds. Handbook of peridynamic modeling. CRC press, 2016.
\item Madenci E, Oterkus E. Peridynamic Theory. InPeridynamic Theory and Its Applications 2014 (pp. 19-43). Springer, New York, NY.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Implementation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Algorithm}
\begin{enumerate}
\item Read the input files
\item Compute the neighborhoods $B_\delta$
\item While $t_n \leq T$
\begin{enumerate}
\item Update the boundary conditions
\item Compute the pair-wise forces $f$
\item Compute the acceleration $a$
\item Approximate the displacement
\item Compute the new positions
\item Output the simulation data
\item Update the time step $t_n = t_n + 1$
\item Update the time $t=\Delta t * t_n$
\end{enumerate}
\end{enumerate}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Summary}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Summary}
\begin{block}{After this lecture, you should know}
\begin{itemize}
\item Concept of peridyanmics
\item Discretization of peridynamics
\item Material models
\end{itemize}
\end{block}
\begin{center}
\textcolor{red}{Note that this lecture is not relevant for the exams, but you should understand the content to implement the course project.}
\end{center}
\end{frame}
\begin{frame}{Disclaimer}
Some of the material, \emph{e.g.}\ figures, plots, equations, and sentences, were adapted from P. Diehl, Modeling and Simulation of cracks and fractures with peridynamics in brittle materials, Doktorarbeit, University of Bonn, 2017.\\
\end{frame}
\end{document}