-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmain.py
167 lines (135 loc) · 4.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
from data import MnistData
from networks import MnistModel, LSTM
from tqdm import tqdm
import pickle
import argparse
import numpy as np
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', type = str2bool, default = True, help = 'use gpu or not')
parser.add_argument('--epochs', type = int, default = 200)
parser.add_argument('--batch_size', type = int, default = 64)
parser.add_argument('--hidden_size', type = int, default = 100)
parser.add_argument('--input_size', type = int, default = 1)
parser.add_argument('--model', type = str, default = 'LSTM')
parser.add_argument('--train', type = str2bool, default = True)
parser.add_argument('--num_units', type = int, default = 6)
parser.add_argument('--rnn_cell', type = str, default = 'LSTM')
parser.add_argument('--key_size_input', type = int, default = 64)
parser.add_argument('--value_size_input', type = int, default = 400)
parser.add_argument('--query_size_input', type = int, default = 64)
parser.add_argument('--num_input_heads', type = int, default = 1)
parser.add_argument('--num_comm_heads', type = int, default = 4)
parser.add_argument('--input_dropout', type = float, default = 0.1)
parser.add_argument('--comm_dropout', type = float, default = 0.1)
parser.add_argument('--key_size_comm', type = int, default = 32)
parser.add_argument('--value_size_comm', type = int, default = 100)
parser.add_argument('--query_size_comm', type = int, default = 32)
parser.add_argument('--k', type = int, default = 4)
parser.add_argument('--size', type = int, default = 14)
parser.add_argument('--loadsaved', type = int, default = 0)
parser.add_argument('--log_dir', type = str, default = 'smnist_lstm_600')
args = vars(parser.parse_args())
log_dir = args['log_dir']
torch.manual_seed(10)
np.random.seed(10)
torch.cuda.manual_seed(10)
if args['model'] == 'LSTM':
mode = LSTM
else:
mode = MnistModel
def test_model(model, loader, func):
accuracy = 0
loss = 0
model.eval()
with torch.no_grad():
for i in tqdm(range(loader.val_len())):
test_x, test_y = func(i)
test_x = model.to_device(test_x)
test_y = model.to_device(test_y).long()
probs = model( test_x)
preds = torch.argmax(probs, dim=1)
correct = preds == test_y
accuracy += correct.sum().item()
accuracy /= 100.0
return accuracy
def train_model(model, epochs, data):
acc=[]
lossstats=[]
best_acc = 0.0
ctr = 0
test_acc = 0
start_epoch=0
ctr=0
if args['loadsaved']==1:
with open(log_dir+'/accstats.pickle','rb') as f:
acc=pickle.load(f)
with open(log_dir+'/lossstats.pickle','rb') as f:
losslist=pickle.load(f)
start_epoch=len(acc)-1
best_acc=0
for i in acc:
if i[0]>best_acc:
best_acc=i[0]
ctr=len(losslist)-1
saved = torch.load(log_dir + '/best_model.pt')
model.load_state_dict(saved['net'])
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
for epoch in range(start_epoch,epochs):
print('epoch ' + str(epoch + 1))
epoch_loss = 0.
iter_ctr = 0.
t_accuracy = 0
norm = 0
model.train()
for i in tqdm(range(data.train_len())):
iter_ctr+=1.
inp_x, inp_y = data.train_get(i)
inp_x = model.to_device(inp_x)
inp_y = model.to_device(inp_y)
output, l = model(inp_x, inp_y)
optimizer.zero_grad()
l.backward()
optimizer.step()
norm += model.grad_norm()
epoch_loss += l.item()
preds = torch.argmax(output, dim=1)
correct = preds == inp_y.long()
t_accuracy += correct.sum().item()
ctr += 1
v_accuracy1 = test_model(model, data, data.val_get1)
v_accuracy2 = test_model(model, data, data.val_get2)
v_accuracy3 = test_model(model, data, data.val_get3)
print('best validation accuracy ' + str(best_acc))
print('Saving best model..')
state = {
'net': model.state_dict(),
'epoch':epoch,
'ctr':ctr,
'best_acc':best_acc
}
with open(log_dir + '/best_model.pt', 'wb') as f:
torch.save(state, f)
print('epoch_loss: {}, val accuracy1: {}, val_accuracy2:{}, val_accuracy3:{}, train_acc: {}, grad_norm: {} '.format(epoch_loss/(iter_ctr), v_accuracy1, v_accuracy2, v_accuracy3, t_accuracy / 600, norm/iter_ctr))
lossstats.append((ctr,epoch_loss/iter_ctr))
acc.append((epoch,(v_accuracy1, v_accuracy2, v_accuracy3)))
with open(log_dir+'/lossstats.pickle','wb') as f:
pickle.dump(lossstats,f)
with open(log_dir+'/accstats.pickle','wb') as f:
pickle.dump(acc,f)
data = MnistData(args['batch_size'], (args['size'], args['size']), args['k'])
model = mode(args).cuda()
if args['train']:
train_model(model, args['epochs'], data)
else:
saved = torch.load(log_dir + '/best_model.pt')
model.load_state_dict(saved['net'])
v_acc = test_model(model, data)
print('val_acc:'+str(v_acc))