From 51cd0efa25f7f45438e6d330a958952bfb17e868 Mon Sep 17 00:00:00 2001 From: Gilles Louppe Date: Wed, 4 May 2016 14:02:58 +0200 Subject: [PATCH] DOC: submission for JOSS --- carl/__init__.py | 2 +- paper.bib | 8 ++++++++ paper.md | 35 +++++++++++++++++++++++++++++++++++ 3 files changed, 44 insertions(+), 1 deletion(-) create mode 100644 paper.bib create mode 100644 paper.md diff --git a/carl/__init__.py b/carl/__init__.py index 33ebec4..b636807 100644 --- a/carl/__init__.py +++ b/carl/__init__.py @@ -56,7 +56,7 @@ import sklearn.base from sklearn.base import clone as sk_clone -__version__ = "0.0" +__version__ = "0.2" def _clone(estimator, safe=True, original=False): diff --git a/paper.bib b/paper.bib new file mode 100644 index 0000000..11f745e --- /dev/null +++ b/paper.bib @@ -0,0 +1,8 @@ +@article{Cranmer:2015-llr, + author = "Cranmer, Kyle and Pavez, Juan and Louppe, Gilles", + title = "{Approximating Likelihood Ratios with Calibrated + Discriminative Classifiers}", + year = "2015", + eprint = "1506.02169", + archivePrefix = "arXiv", +} diff --git a/paper.md b/paper.md new file mode 100644 index 0000000..5be0031 --- /dev/null +++ b/paper.md @@ -0,0 +1,35 @@ +--- +title: 'carl: a likelihood-free inference toolbox' +tags: + - likehood-free inference + - density ratio estimation + - Python +authors: + - name: Gilles Louppe + orcid: 0000-0002-2082-3106 + affiliation: New York University + - name: Kyle Cranmer + orcid: 0000-0002-5769-7094 + affiliation: New York University + - name: Juan Pavez + orcid: 0000-0002-7205-0053 + affiliation: Federico Santa MarĂ­a University +date: 4 May 2016 +bibliography: paper.bib +--- + +# Summary + +Carl is a likelihood-free inference toolbox for Python. Its goal is +to provide tools to support inference in the likelihood-free setup, +including density ratio estimation algorithms, parameterized supervised +learning and calibration procedures. + +Methodological details regarding likelihood-free inference with calibrated +classifiers can be found in the companion paper [@Cranmer:2015-llr]. + +Future development aims at providing further density ratio estimation +algorithms, along with alternative algorithms for the likelihood-free setup, +such as ABC. + +# References