-
Notifications
You must be signed in to change notification settings - Fork 380
/
Copy pathcache.go
802 lines (726 loc) · 23.2 KB
/
cache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/*
* Copyright 2019 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Ristretto is a fast, fixed size, in-memory cache with a dual focus on
// throughput and hit ratio performance. You can easily add Ristretto to an
// existing system and keep the most valuable data where you need it.
package ristretto
import (
"bytes"
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
"unsafe"
"github.com/dgraph-io/ristretto/v2/z"
)
var (
// TODO: find the optimal value for this or make it configurable
setBufSize = 32 * 1024
)
const itemSize = int64(unsafe.Sizeof(storeItem[any]{}))
func zeroValue[T any]() T {
var zero T
return zero
}
// Key is the generic type to represent the keys type in key-value pair of the cache.
type Key = z.Key
// Cache is a thread-safe implementation of a hashmap with a TinyLFU admission
// policy and a Sampled LFU eviction policy. You can use the same Cache instance
// from as many goroutines as you want.
type Cache[K Key, V any] struct {
// storedItems is the central concurrent hashmap where key-value items are stored.
storedItems store[V]
// cachePolicy determines what gets let in to the cache and what gets kicked out.
cachePolicy *defaultPolicy[V]
// getBuf is a custom ring buffer implementation that gets pushed to when
// keys are read.
getBuf *ringBuffer
// setBuf is a buffer allowing us to batch/drop Sets during times of high
// contention.
setBuf chan *Item[V]
// onEvict is called for item evictions.
onEvict func(*Item[V])
// onReject is called when an item is rejected via admission policy.
onReject func(*Item[V])
// onExit is called whenever a value goes out of scope from the cache.
onExit (func(V))
// KeyToHash function is used to customize the key hashing algorithm.
// Each key will be hashed using the provided function. If keyToHash value
// is not set, the default keyToHash function is used.
keyToHash func(K) (uint64, uint64)
// stop is used to stop the processItems goroutine.
stop chan struct{}
done chan struct{}
// indicates whether cache is closed.
isClosed atomic.Bool
// cost calculates cost from a value.
cost func(value V) int64
// ignoreInternalCost dictates whether to ignore the cost of internally storing
// the item in the cost calculation.
ignoreInternalCost bool
// cleanupTicker is used to periodically check for entries whose TTL has passed.
cleanupTicker *time.Ticker
// Metrics contains a running log of important statistics like hits, misses,
// and dropped items.
Metrics *Metrics
}
// Config is passed to NewCache for creating new Cache instances.
type Config[K Key, V any] struct {
// NumCounters determines the number of counters (keys) to keep that hold
// access frequency information. It's generally a good idea to have more
// counters than the max cache capacity, as this will improve eviction
// accuracy and subsequent hit ratios.
//
// For example, if you expect your cache to hold 1,000,000 items when full,
// NumCounters should be 10,000,000 (10x). Each counter takes up roughly
// 3 bytes (4 bits for each counter * 4 copies plus about a byte per
// counter for the bloom filter). Note that the number of counters is
// internally rounded up to the nearest power of 2, so the space usage
// may be a little larger than 3 bytes * NumCounters.
//
// We've seen good performance in setting this to 10x the number of items
// you expect to keep in the cache when full.
NumCounters int64
// MaxCost is how eviction decisions are made. For example, if MaxCost is
// 100 and a new item with a cost of 1 increases total cache cost to 101,
// 1 item will be evicted.
//
// MaxCost can be considered as the cache capacity, in whatever units you
// choose to use.
//
// For example, if you want the cache to have a max capacity of 100MB, you
// would set MaxCost to 100,000,000 and pass an item's number of bytes as
// the `cost` parameter for calls to Set. If new items are accepted, the
// eviction process will take care of making room for the new item and not
// overflowing the MaxCost value.
//
// MaxCost could be anything as long as it matches how you're using the cost
// values when calling Set.
MaxCost int64
// BufferItems determines the size of Get buffers.
//
// Unless you have a rare use case, using `64` as the BufferItems value
// results in good performance.
//
// If for some reason you see Get performance decreasing with lots of
// contention (you shouldn't), try increasing this value in increments of 64.
// This is a fine-tuning mechanism and you probably won't have to touch this.
BufferItems int64
// Metrics is true when you want variety of stats about the cache.
// There is some overhead to keeping statistics, so you should only set this
// flag to true when testing or throughput performance isn't a major factor.
Metrics bool
// OnEvict is called for every eviction with the evicted item.
OnEvict func(item *Item[V])
// OnReject is called for every rejection done via the policy.
OnReject func(item *Item[V])
// OnExit is called whenever a value is removed from cache. This can be
// used to do manual memory deallocation. Would also be called on eviction
// as well as on rejection of the value.
OnExit func(val V)
// ShouldUpdate is called when a value already exists in cache and is being updated.
// If ShouldUpdate returns true, the cache continues with the update (Set). If the
// function returns false, no changes are made in the cache. If the value doesn't
// already exist, the cache continue with setting that value for the given key.
//
// In this function, you can check whether the new value is valid. For example, if
// your value has timestamp assosicated with it, you could check whether the new
// value has the latest timestamp, preventing you from setting an older value.
ShouldUpdate func(cur, prev V) bool
// KeyToHash function is used to customize the key hashing algorithm.
// Each key will be hashed using the provided function. If keyToHash value
// is not set, the default keyToHash function is used.
//
// Ristretto has a variety of defaults depending on the underlying interface type
// https://github.com/dgraph-io/ristretto/blob/master/z/z.go#L19-L41).
//
// Note that if you want 128bit hashes you should use the both the values
// in the return of the function. If you want to use 64bit hashes, you can
// just return the first uint64 and return 0 for the second uint64.
KeyToHash func(key K) (uint64, uint64)
// Cost evaluates a value and outputs a corresponding cost. This function is ran
// after Set is called for a new item or an item is updated with a cost param of 0.
//
// Cost is an optional function you can pass to the Config in order to evaluate
// item cost at runtime, and only whentthe Set call isn't going to be dropped. This
// is useful if calculating item cost is particularly expensive and you don't want to
// waste time on items that will be dropped anyways.
//
// To signal to Ristretto that you'd like to use this Cost function:
// 1. Set the Cost field to a non-nil function.
// 2. When calling Set for new items or item updates, use a `cost` of 0.
Cost func(value V) int64
// IgnoreInternalCost set to true indicates to the cache that the cost of
// internally storing the value should be ignored. This is useful when the
// cost passed to set is not using bytes as units. Keep in mind that setting
// this to true will increase the memory usage.
IgnoreInternalCost bool
// TtlTickerDurationInSec sets the value of time ticker for cleanup keys on TTL expiry.
TtlTickerDurationInSec int64
}
type itemFlag byte
const (
itemNew itemFlag = iota
itemDelete
itemUpdate
)
// Item is a full representation of what's stored in the cache for each key-value pair.
type Item[V any] struct {
flag itemFlag
Key uint64
Conflict uint64
Value V
Cost int64
Expiration time.Time
wg *sync.WaitGroup
}
// NewCache returns a new Cache instance and any configuration errors, if any.
func NewCache[K Key, V any](config *Config[K, V]) (*Cache[K, V], error) {
switch {
case config.NumCounters == 0:
return nil, errors.New("NumCounters can't be zero")
case config.NumCounters < 0:
return nil, errors.New("NumCounters can't be negative number")
case config.MaxCost == 0:
return nil, errors.New("MaxCost can't be zero")
case config.MaxCost < 0:
return nil, errors.New("MaxCost can't be be negative number")
case config.BufferItems == 0:
return nil, errors.New("BufferItems can't be zero")
case config.BufferItems < 0:
return nil, errors.New("BufferItems can't be be negative number")
case config.TtlTickerDurationInSec == 0:
config.TtlTickerDurationInSec = bucketDurationSecs
}
policy := newPolicy[V](config.NumCounters, config.MaxCost)
cache := &Cache[K, V]{
storedItems: newStore[V](),
cachePolicy: policy,
getBuf: newRingBuffer(policy, config.BufferItems),
setBuf: make(chan *Item[V], setBufSize),
keyToHash: config.KeyToHash,
stop: make(chan struct{}),
done: make(chan struct{}),
cost: config.Cost,
ignoreInternalCost: config.IgnoreInternalCost,
cleanupTicker: time.NewTicker(time.Duration(config.TtlTickerDurationInSec) * time.Second / 2),
}
cache.storedItems.SetShouldUpdateFn(config.ShouldUpdate)
cache.onExit = func(val V) {
if config.OnExit != nil {
config.OnExit(val)
}
}
cache.onEvict = func(item *Item[V]) {
if config.OnEvict != nil {
config.OnEvict(item)
}
cache.onExit(item.Value)
}
cache.onReject = func(item *Item[V]) {
if config.OnReject != nil {
config.OnReject(item)
}
cache.onExit(item.Value)
}
if cache.keyToHash == nil {
cache.keyToHash = z.KeyToHash[K]
}
if config.Metrics {
cache.collectMetrics()
}
// NOTE: benchmarks seem to show that performance decreases the more
// goroutines we have running cache.processItems(), so 1 should
// usually be sufficient
go cache.processItems()
return cache, nil
}
// Wait blocks until all buffered writes have been applied. This ensures a call to Set()
// will be visible to future calls to Get().
func (c *Cache[K, V]) Wait() {
if c == nil || c.isClosed.Load() {
return
}
wg := &sync.WaitGroup{}
wg.Add(1)
c.setBuf <- &Item[V]{wg: wg}
wg.Wait()
}
// Get returns the value (if any) and a boolean representing whether the
// value was found or not. The value can be nil and the boolean can be true at
// the same time. Get will not return expired items.
func (c *Cache[K, V]) Get(key K) (V, bool) {
if c == nil || c.isClosed.Load() {
return zeroValue[V](), false
}
keyHash, conflictHash := c.keyToHash(key)
c.getBuf.Push(keyHash)
value, ok := c.storedItems.Get(keyHash, conflictHash)
if ok {
c.Metrics.add(hit, keyHash, 1)
} else {
c.Metrics.add(miss, keyHash, 1)
}
return value, ok
}
// Set attempts to add the key-value item to the cache. If it returns false,
// then the Set was dropped and the key-value item isn't added to the cache. If
// it returns true, there's still a chance it could be dropped by the policy if
// its determined that the key-value item isn't worth keeping, but otherwise the
// item will be added and other items will be evicted in order to make room.
//
// To dynamically evaluate the items cost using the Config.Coster function, set
// the cost parameter to 0 and Coster will be ran when needed in order to find
// the items true cost.
//
// Set writes the value of type V as is. If type V is a pointer type, It is ok
// to update the memory pointed to by the pointer. Updating the pointer itself
// will not be reflected in the cache. Be careful when using slice types as the
// value type V. Calling `append` may update the underlined array pointer which
// will not be reflected in the cache.
func (c *Cache[K, V]) Set(key K, value V, cost int64) bool {
return c.SetWithTTL(key, value, cost, 0*time.Second)
}
// SetWithTTL works like Set but adds a key-value pair to the cache that will expire
// after the specified TTL (time to live) has passed. A zero value means the value never
// expires, which is identical to calling Set. A negative value is a no-op and the value
// is discarded.
//
// See Set for more information.
func (c *Cache[K, V]) SetWithTTL(key K, value V, cost int64, ttl time.Duration) bool {
if c == nil || c.isClosed.Load() {
return false
}
var expiration time.Time
switch {
case ttl == 0:
// No expiration.
break
case ttl < 0:
// Treat this a no-op.
return false
default:
expiration = time.Now().Add(ttl)
}
keyHash, conflictHash := c.keyToHash(key)
i := &Item[V]{
flag: itemNew,
Key: keyHash,
Conflict: conflictHash,
Value: value,
Cost: cost,
Expiration: expiration,
}
// cost is eventually updated. The expiration must also be immediately updated
// to prevent items from being prematurely removed from the map.
if prev, ok := c.storedItems.Update(i); ok {
c.onExit(prev)
i.flag = itemUpdate
}
// Attempt to send item to cachePolicy.
select {
case c.setBuf <- i:
return true
default:
if i.flag == itemUpdate {
// Return true if this was an update operation since we've already
// updated the storedItems. For all the other operations (set/delete), we
// return false which means the item was not inserted.
return true
}
c.Metrics.add(dropSets, keyHash, 1)
return false
}
}
// Del deletes the key-value item from the cache if it exists.
func (c *Cache[K, V]) Del(key K) {
if c == nil || c.isClosed.Load() {
return
}
keyHash, conflictHash := c.keyToHash(key)
// Delete immediately.
_, prev := c.storedItems.Del(keyHash, conflictHash)
c.onExit(prev)
// If we've set an item, it would be applied slightly later.
// So we must push the same item to `setBuf` with the deletion flag.
// This ensures that if a set is followed by a delete, it will be
// applied in the correct order.
c.setBuf <- &Item[V]{
flag: itemDelete,
Key: keyHash,
Conflict: conflictHash,
}
}
// GetTTL returns the TTL for the specified key and a bool that is true if the
// item was found and is not expired.
func (c *Cache[K, V]) GetTTL(key K) (time.Duration, bool) {
if c == nil {
return 0, false
}
keyHash, conflictHash := c.keyToHash(key)
if _, ok := c.storedItems.Get(keyHash, conflictHash); !ok {
// not found
return 0, false
}
expiration := c.storedItems.Expiration(keyHash)
if expiration.IsZero() {
// found but no expiration
return 0, true
}
if time.Now().After(expiration) {
// found but expired
return 0, false
}
return time.Until(expiration), true
}
// Close stops all goroutines and closes all channels.
func (c *Cache[K, V]) Close() {
if c == nil || c.isClosed.Load() {
return
}
c.Clear()
// Block until processItems goroutine is returned.
c.stop <- struct{}{}
<-c.done
close(c.stop)
close(c.done)
close(c.setBuf)
c.cachePolicy.Close()
c.cleanupTicker.Stop()
c.isClosed.Store(true)
}
// Clear empties the hashmap and zeroes all cachePolicy counters. Note that this is
// not an atomic operation (but that shouldn't be a problem as it's assumed that
// Set/Get calls won't be occurring until after this).
func (c *Cache[K, V]) Clear() {
if c == nil || c.isClosed.Load() {
return
}
// Block until processItems goroutine is returned.
c.stop <- struct{}{}
<-c.done
// Clear out the setBuf channel.
loop:
for {
select {
case i := <-c.setBuf:
if i.wg != nil {
i.wg.Done()
continue
}
if i.flag != itemUpdate {
// In itemUpdate, the value is already set in the storedItems. So, no need to call
// onEvict here.
c.onEvict(i)
}
default:
break loop
}
}
// Clear value hashmap and cachePolicy data.
c.cachePolicy.Clear()
c.storedItems.Clear(c.onEvict)
// Only reset metrics if they're enabled.
if c.Metrics != nil {
c.Metrics.Clear()
}
// Restart processItems goroutine.
go c.processItems()
}
// MaxCost returns the max cost of the cache.
func (c *Cache[K, V]) MaxCost() int64 {
if c == nil {
return 0
}
return c.cachePolicy.MaxCost()
}
// UpdateMaxCost updates the maxCost of an existing cache.
func (c *Cache[K, V]) UpdateMaxCost(maxCost int64) {
if c == nil {
return
}
c.cachePolicy.UpdateMaxCost(maxCost)
}
// processItems is ran by goroutines processing the Set buffer.
func (c *Cache[K, V]) processItems() {
startTs := make(map[uint64]time.Time)
numToKeep := 100000 // TODO: Make this configurable via options.
trackAdmission := func(key uint64) {
if c.Metrics == nil {
return
}
startTs[key] = time.Now()
if len(startTs) > numToKeep {
for k := range startTs {
if len(startTs) <= numToKeep {
break
}
delete(startTs, k)
}
}
}
onEvict := func(i *Item[V]) {
if ts, has := startTs[i.Key]; has {
c.Metrics.trackEviction(int64(time.Since(ts) / time.Second))
delete(startTs, i.Key)
}
if c.onEvict != nil {
c.onEvict(i)
}
}
for {
select {
case i := <-c.setBuf:
if i.wg != nil {
i.wg.Done()
continue
}
// Calculate item cost value if new or update.
if i.Cost == 0 && c.cost != nil && i.flag != itemDelete {
i.Cost = c.cost(i.Value)
}
if !c.ignoreInternalCost {
// Add the cost of internally storing the object.
i.Cost += itemSize
}
switch i.flag {
case itemNew:
victims, added := c.cachePolicy.Add(i.Key, i.Cost)
if added {
c.storedItems.Set(i)
c.Metrics.add(keyAdd, i.Key, 1)
trackAdmission(i.Key)
} else {
c.onReject(i)
}
for _, victim := range victims {
victim.Conflict, victim.Value = c.storedItems.Del(victim.Key, 0)
onEvict(victim)
}
case itemUpdate:
c.cachePolicy.Update(i.Key, i.Cost)
case itemDelete:
c.cachePolicy.Del(i.Key) // Deals with metrics updates.
_, val := c.storedItems.Del(i.Key, i.Conflict)
c.onExit(val)
}
case <-c.cleanupTicker.C:
c.storedItems.Cleanup(c.cachePolicy, onEvict)
case <-c.stop:
c.done <- struct{}{}
return
}
}
}
// collectMetrics just creates a new *Metrics instance and adds the pointers
// to the cache and policy instances.
func (c *Cache[K, V]) collectMetrics() {
c.Metrics = newMetrics()
c.cachePolicy.CollectMetrics(c.Metrics)
}
type metricType int
const (
// The following 2 keep track of hits and misses.
hit = iota
miss
// The following 3 keep track of number of keys added, updated and evicted.
keyAdd
keyUpdate
keyEvict
// The following 2 keep track of cost of keys added and evicted.
costAdd
costEvict
// The following keep track of how many sets were dropped or rejected later.
dropSets
rejectSets
// The following 2 keep track of how many gets were kept and dropped on the
// floor.
dropGets
keepGets
// This should be the final enum. Other enums should be set before this.
doNotUse
)
func stringFor(t metricType) string {
switch t {
case hit:
return "hit"
case miss:
return "miss"
case keyAdd:
return "keys-added"
case keyUpdate:
return "keys-updated"
case keyEvict:
return "keys-evicted"
case costAdd:
return "cost-added"
case costEvict:
return "cost-evicted"
case dropSets:
return "sets-dropped"
case rejectSets:
return "sets-rejected" // by policy.
case dropGets:
return "gets-dropped"
case keepGets:
return "gets-kept"
default:
return "unidentified"
}
}
// Metrics is a snapshot of performance statistics for the lifetime of a cache instance.
type Metrics struct {
all [doNotUse][]*uint64
mu sync.RWMutex
life *z.HistogramData // Tracks the life expectancy of a key.
}
func newMetrics() *Metrics {
s := &Metrics{
life: z.NewHistogramData(z.HistogramBounds(1, 16)),
}
for i := 0; i < doNotUse; i++ {
s.all[i] = make([]*uint64, 256)
slice := s.all[i]
for j := range slice {
slice[j] = new(uint64)
}
}
return s
}
func (p *Metrics) add(t metricType, hash, delta uint64) {
if p == nil {
return
}
valp := p.all[t]
// Avoid false sharing by padding at least 64 bytes of space between two
// atomic counters which would be incremented.
idx := (hash % 25) * 10
atomic.AddUint64(valp[idx], delta)
}
func (p *Metrics) get(t metricType) uint64 {
if p == nil {
return 0
}
valp := p.all[t]
var total uint64
for i := range valp {
total += atomic.LoadUint64(valp[i])
}
return total
}
// Hits is the number of Get calls where a value was found for the corresponding key.
func (p *Metrics) Hits() uint64 {
return p.get(hit)
}
// Misses is the number of Get calls where a value was not found for the corresponding key.
func (p *Metrics) Misses() uint64 {
return p.get(miss)
}
// KeysAdded is the total number of Set calls where a new key-value item was added.
func (p *Metrics) KeysAdded() uint64 {
return p.get(keyAdd)
}
// KeysUpdated is the total number of Set calls where the value was updated.
func (p *Metrics) KeysUpdated() uint64 {
return p.get(keyUpdate)
}
// KeysEvicted is the total number of keys evicted.
func (p *Metrics) KeysEvicted() uint64 {
return p.get(keyEvict)
}
// CostAdded is the sum of costs that have been added (successful Set calls).
func (p *Metrics) CostAdded() uint64 {
return p.get(costAdd)
}
// CostEvicted is the sum of all costs that have been evicted.
func (p *Metrics) CostEvicted() uint64 {
return p.get(costEvict)
}
// SetsDropped is the number of Set calls that don't make it into internal
// buffers (due to contention or some other reason).
func (p *Metrics) SetsDropped() uint64 {
return p.get(dropSets)
}
// SetsRejected is the number of Set calls rejected by the policy (TinyLFU).
func (p *Metrics) SetsRejected() uint64 {
return p.get(rejectSets)
}
// GetsDropped is the number of Get counter increments that are dropped
// internally.
func (p *Metrics) GetsDropped() uint64 {
return p.get(dropGets)
}
// GetsKept is the number of Get counter increments that are kept.
func (p *Metrics) GetsKept() uint64 {
return p.get(keepGets)
}
// Ratio is the number of Hits over all accesses (Hits + Misses). This is the
// percentage of successful Get calls.
func (p *Metrics) Ratio() float64 {
if p == nil {
return 0.0
}
hits, misses := p.get(hit), p.get(miss)
if hits == 0 && misses == 0 {
return 0.0
}
return float64(hits) / float64(hits+misses)
}
func (p *Metrics) trackEviction(numSeconds int64) {
if p == nil {
return
}
p.mu.Lock()
defer p.mu.Unlock()
p.life.Update(numSeconds)
}
func (p *Metrics) LifeExpectancySeconds() *z.HistogramData {
if p == nil {
return nil
}
p.mu.RLock()
defer p.mu.RUnlock()
return p.life.Copy()
}
// Clear resets all the metrics.
func (p *Metrics) Clear() {
if p == nil {
return
}
for i := 0; i < doNotUse; i++ {
for j := range p.all[i] {
atomic.StoreUint64(p.all[i][j], 0)
}
}
p.mu.Lock()
p.life = z.NewHistogramData(z.HistogramBounds(1, 16))
p.mu.Unlock()
}
// String returns a string representation of the metrics.
func (p *Metrics) String() string {
if p == nil {
return ""
}
var buf bytes.Buffer
for i := 0; i < doNotUse; i++ {
t := metricType(i)
fmt.Fprintf(&buf, "%s: %d ", stringFor(t), p.get(t))
}
fmt.Fprintf(&buf, "gets-total: %d ", p.get(hit)+p.get(miss))
fmt.Fprintf(&buf, "hit-ratio: %.2f", p.Ratio())
return buf.String()
}