-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_vocab.py
171 lines (136 loc) · 6.22 KB
/
build_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import pickle
from collections import Counter
class TorchVocab(object):
"""
:property freqs: collections.Counter, コーパス中の単語の出現頻度を保持するオブジェクト
:property stoi: collections.defaultdict, string → id の対応を示す辞書
:property itos: collections.defaultdict, id → string の対応を示す辞書
"""
def __init__(self, counter, max_size=None, min_freq=1, specials=['<pad>', '<oov>'],
vectors=None, unk_init=None, vectors_cache=None):
"""
:param counter: collections.Counter, データ中に含まれる単語の頻度を計測するためのcounter
:param max_size: int, vocabularyの最大のサイズ. Noneの場合は最大値なし. defaultはNone
:param min_freq: int, vocabulary中の単語の最低出現頻度. この数以下の出現回数の単語はvocabularyに加えられない.
:param specials: list of str, vocabularyにあらかじめ登録するtoken
:param vectors: list of vectors, 事前学習済みのベクトル. ex)Vocab.load_vectors
"""
self.freqs = counter
counter = counter.copy()
min_freq = max(min_freq, 1)
self.itos = list(specials)
# special tokensの出現頻度はvocabulary作成の際にカウントされない
for tok in specials:
del counter[tok]
max_size = None if max_size is None else max_size + len(self.itos)
# まず頻度でソートし、次に文字順で並び替える
words_and_frequencies = sorted(counter.items(), key=lambda tup: tup[0])
words_and_frequencies.sort(key=lambda tup: tup[1], reverse=True)
# 出現頻度がmin_freq未満のものはvocabに加えない
for word, freq in words_and_frequencies:
if freq < min_freq or len(self.itos) == max_size:
break
self.itos.append(word)
# dictのk,vをいれかえてstoiを作成する
self.stoi = {tok: i for i, tok in enumerate(self.itos)}
self.vectors = None
if vectors is not None:
self.load_vectors(vectors, unk_init=unk_init, cache=vectors_cache)
else:
assert unk_init is None and vectors_cache is None
def __eq__(self, other):
if self.freqs != other.freqs:
return False
if self.stoi != other.stoi:
return False
if self.itos != other.itos:
return False
if self.vectors != other.vectors:
return False
return True
def __len__(self):
return len(self.itos)
def vocab_rerank(self):
self.stoi = {word: i for i, word in enumerate(self.itos)}
def extend(self, v, sort=False):
words = sorted(v.itos) if sort else v.itos
for w in words:
if w not in self.stoi:
self.itos.append(w)
self.stoi[w] = len(self.itos) - 1
class Vocab(TorchVocab):
def __init__(self, counter, max_size=None, min_freq=1):
self.pad_index = 0
self.unk_index = 1
self.eos_index = 2
self.sos_index = 3
self.mask_index = 4
super().__init__(counter, specials=["<pad>", "<unk>", "<eos>", "<sos>", "<mask>"], max_size=max_size, min_freq=min_freq)
# override用
def to_seq(self, sentece, seq_len, with_eos=False, with_sos=False) -> list:
pass
# override用
def from_seq(self, seq, join=False, with_pad=False):
pass
@staticmethod
def load_vocab(vocab_path: str) -> 'Vocab':
with open(vocab_path, "rb") as f:
return pickle.load(f)
def save_vocab(self, vocab_path):
with open(vocab_path, "wb") as f:
pickle.dump(self, f)
# テキストファイルからvocabを作成する
class WordVocab(Vocab):
def __init__(self, texts, max_size=None, min_freq=1):
print("Building Vocab")
counter = Counter()
for line in texts:
if isinstance(line, list):
words = line
else:
words = line.replace("\n", "").replace("\t", "").split()
for word in words:
counter[word] += 1
super().__init__(counter, max_size=max_size, min_freq=min_freq)
def to_seq(self, sentence, seq_len=None, with_eos=False, with_sos=False, with_len=False):
if isinstance(sentence, str):
sentence = sentence.split()
seq = [self.stoi.get(word, self.unk_index) for word in sentence]
if with_eos:
seq += [self.eos_index] # this would be index 1
if with_sos:
seq = [self.sos_index] + seq
origin_seq_len = len(seq)
if seq_len is None:
pass
elif len(seq) <= seq_len:
seq += [self.pad_index for _ in range(seq_len - len(seq))]
else:
seq = seq[:seq_len]
return (seq, origin_seq_len) if with_len else seq
def from_seq(self, seq, join=False, with_pad=False):
words = [self.itos[idx]
if idx < len(self.itos)
else "<%d>" % idx
for idx in seq
if not with_pad or idx != self.pad_index]
return " ".join(words) if join else words
@staticmethod
def load_vocab(vocab_path: str) -> 'WordVocab':
with open(vocab_path, "rb") as f:
return pickle.load(f)
def main():
parser = argparse.ArgumentParser(description='Build a vocabulary pickle')
parser.add_argument('--corpus_path', '-c', type=str, default='data/chembl24_corpus.txt', help='path to th ecorpus')
parser.add_argument('--out_path', '-o', type=str, default='data/vocab.pkl', help='output file')
parser.add_argument('--min_freq', '-m', type=int, default=500, help='minimum frequency for vocabulary')
parser.add_argument('--vocab_size', '-v', type=int, default=None, help='max vocabulary size')
parser.add_argument('--encoding', '-e', type=str, default='utf-8', help='encoding of corpus')
args = parser.parse_args()
with open(args.corpus_path, "r", encoding=args.encoding) as f:
vocab = WordVocab(f, max_size=args.vocab_size, min_freq=args.min_freq)
print("VOCAB SIZE:", len(vocab))
vocab.save_vocab(args.out_path)
if __name__=='__main__':
main()