-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_ai.py
198 lines (145 loc) · 7.48 KB
/
test_ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# coding: utf-8
# # Object Detection Demo
# Welcome to the object detection inference walkthrough! This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image. Make sure to follow the [installation instructions](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md) before you start.
# #
# In[ ]:
## v4
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2
import datetime
from timeit import default_timer as timer
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
SCRIPT_NAME = 'Test Object Detection Test AI V4'
print(SCRIPT_NAME)
from utils import label_map_util
from utils import visualization_utils as vis_util
# # Model preparation
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/home/denny/run_ai/test_ai/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/home/denny/run_ai/test_ai/label_map.pbtxt'
NUM_CLASSES = 1
# ## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# # Detection
def run_inference_for_images(images, graph):
with graph.as_default():
with tf.Session() as sess:
output_dict_array = []
for image in images:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
output_dict_array.append(output_dict)
return output_dict_array
FILE_INPUT = '/home/denny/run_ai/test_ai/test.mp4'
cap = cv2.VideoCapture(FILE_INPUT)
FILE_OUTPUT = '/home/denny/run_ai/test_ai/output_test.mp4'
BATCH_SIZE = 100
# Define the codec and create VideoWriter object
ret, frame = cap.read()
print('OpenCV version:',cv2.__version__,'ret =', ret, 'W =', frame.shape[1], 'H =', frame.shape[0], 'channel =', frame.shape[2])
FPS= 25.0
FrameSize=(frame.shape[1], frame.shape[0]) # MUST set or not thing happen !!!!
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(FILE_OUTPUT, fourcc, FPS, FrameSize)
frameCount = 1
images = []
while (cap.isOpened() and frameCount <= 10000):
ret, image_np = cap.read()
if ret == True:
frameCount = frameCount + 1
if frameCount < 300: ##skip a few seconds
continue
##cv2.imshow('Input: ', image_np)
images.append(image_np)
if frameCount % BATCH_SIZE == 0:
now = datetime.datetime.now()
print(str(now) + " : count is : " + str(frameCount))
start = timer()
output_dict_array = run_inference_for_images(images,detection_graph)
end = timer()
avg = (end - start) / len(images)
print("TF inferencing took: "+str(end - start) +" for ["+str(len(images))+"] images, average["+str(avg)+"]")
## print("output array has:" + str(len(output_dict_array)))
for idx in range(len(output_dict_array)):
output_dict = output_dict_array[idx]
image_np_org = images[idx]
vis_util.visualize_boxes_and_labels_on_image_array(
image_np_org,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=6)
out.write(image_np_org)
##cv2.imshow('object image', image_np_org)
del output_dict_array[:]
del images[:]
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()