-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsom.py
47 lines (41 loc) · 1.21 KB
/
som.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Self Organizing Map
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Credit_Card_Applications.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
# Feature Scaling
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
X = sc.fit_transform(X)
# Training the SOM
from minisom import MiniSom
som = MiniSom(x = 10, y = 10, input_len = 15, sigma = 1.0, learning_rate = 0.5)
som.random_weights_init(X)
som.train_random(data = X, num_iteration = 100)
# Visualizing the results
from pylab import bone, pcolor, colorbar, plot, show
bone()
#pcolor(som.distance_map())
pcolor(som.distance_map().T)
colorbar()
markers = ['o', 's']
colors = ['r', 'g']
for i, x in enumerate(X):
w = som.winner(x)
plot(w[0] + 0.5,
w[1] + 0.5,
markers[y[i]],
markeredgecolor = colors[y[i]],
markerfacecolor = 'None',
markersize = 10,
markeredgewidth = 2)
show()
# Finding the frauds
mappings = som.win_map(X)
frauds = np.concatenate((mappings[(7,3)], mappings[(7,4)]), axis = 0)
frauds = sc.inverse_transform(frauds)
# change the float format to %.3f