-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
135 lines (88 loc) · 4.03 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
from inspector import Inspector
# config
result_path = "data/20210409-01"
df_config = pd.read_csv("data/20210409-01_config.csv")
df_filtered = df_config
st.title('Artificial Deliberating Agents Inspector')
st.markdown('Inspect the simulation runs underpinning the paper *Natural-Language Multi-Agent Simulations of Argumentative Opinion Dynamics* ([Betz 2021](http://arxiv.org/abs/2104.06737)).')
# Sidebar
st.sidebar.subheader('Simulation run')
filter_update = st.sidebar.selectbox(
'Filter for update mechanism:',
["any","random/all","random/bounded confidence","confirmation bias/all","homophily/all"])
if filter_update!="any":
# filter by peer selection method
if filter_update=="random/bounded confidence":
df_filtered = df_filtered[df_filtered.peer_selection_method.eq('bounded_confidence')]
else:
df_filtered = df_filtered[df_filtered.peer_selection_method.eq('all_neighbors')]
# filter by perspective updating
if filter_update=='confirmation bias/all':
df_filtered = df_filtered[df_filtered.perspective_expansion_method.eq('confirmation_bias_lazy')]
elif filter_update=='homophily/all':
df_filtered = df_filtered[df_filtered.perspective_expansion_method.eq('homophily')]
else:
df_filtered = df_filtered[df_filtered.perspective_expansion_method.eq('random')]
filter_agent_type = st.sidebar.selectbox(
'Filter for agent type:',
["any","listening","generating (creative)","generating (narrow)"])
# filter by peer selection method
if filter_agent_type!="any":
if filter_agent_type=="listening":
df_filtered = df_filtered[df_filtered.agent_type.eq('listening')]
elif filter_agent_type=="generating (creative)":
df_filtered = df_filtered[df_filtered.agent_type.eq('generating') & df_filtered['temp/top_p'].eq('[1.4, 0.95]')]
elif filter_agent_type=="generating (narrow)":
df_filtered = df_filtered[df_filtered.agent_type.eq('generating') & df_filtered['temp/top_p'].eq('[1.0, 0.5]')]
run_id = st.sidebar.selectbox(
'Simulation run to inspect:',
df_filtered.run_id.to_list())
st.sidebar.subheader('Perspective of agent')
agent_focus = st.sidebar.selectbox('Select agent:' , list(range(20)))
step_focus = st.sidebar.slider('Select time step:' , min_value=6 , max_value=148 , value=148 , step=1)
st.sidebar.subheader('Clustering')
show_clusters = st.sidebar.checkbox('Compute clusters')
if show_clusters:
step_clustering = st.sidebar.slider('Evaluate clustering at time step:' , min_value=5 , max_value=149 , value=149 , step=1, key='cluster_step')
# Load data
configrun = df_filtered.loc[df_filtered['run_id'] == run_id].iloc[0]
df_results = Inspector.results_for_run(configrun)
# Perspective Table
html_perspective = Inspector.get_persp(
data=df_results,
display_agent=agent_focus,
step=step_focus).set_properties(**{'font-size': '9pt', 'font-family': 'Calibri', 'width': '200px'}).render()
html_perspective = """
<p style='font-size:9pt;font-family:Calibri;'>
<span style="color:Orange">newly added</span> |
<span style="color:SlateBlue">marked for removal</span> |
<b>written by agent</b> |
<u>newly generated</u>
</p>
"""+html_perspective
# Cluster analysis
if show_clusters:
cluster_labels = Inspector.cluster_labels(data=df_results, span = 3, t = step_clustering)
#df_results['cluster']=df_results.agent.apply(lambda i: cluster_labels[i])
else:
cluster_labels = []
# MAIN PAGE
st.subheader('Opinion trajectories of all agents')
fig = Inspector.detailed_plots(
config=configrun,
data=df_results,
highlight_agents=[agent_focus],
highlight_range=[step_focus-1,step_focus+1],
clusters=cluster_labels,
legend=None
)
st.pyplot(fig)
#st.write(df_results.head())
st.subheader('Perspective of the selected agent')
#st.dataframe(Inspector.get_persp(data=df_results, display_agent=agent_focus, step=step_focus))
components.html(html_perspective, height=600, scrolling=True)
st.subheader('Parameters')
configrun