-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalaska.py
257 lines (221 loc) · 9.93 KB
/
alaska.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
os.environ["PROJ_LIB"] = "C:\\Users\\Dundo\\Anaconda3\\Library\\share"; # quick fix
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import utilities
import numpy as np
import pandas as pd
from obspy.imaging.beachball import beach, beachball, mt2plane
from matplotlib.colors import Normalize
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon
from scipy.spatial import ConvexHull
import seaborn as sns
from matplotlib.ticker import PercentFormatter
import plotly.graph_objs as go
from datetime import datetime
from scipy.interpolate import griddata
sns.set_style("white")
flatten = lambda l: [item for sublist in l for item in sublist]
df = pd.read_pickle("./gcmt_all_earthquakes.pkl")
df = df[(df.lat > 40) & (df.lat < 72) & (df.lon > -175) & (df.lon < -120)]
MomentTensors = [utilities.row2mt(row) for row in df.to_numpy()]
print('Total number of tensors: ', len(MomentTensors))
coords = [(mt.lon, mt.lat) for mt in MomentTensors]
depth = [mt.depth for mt in MomentTensors]
nzones = 7
zone1 = Polygon([(-172.038, 52.6893), (-171.792, 51.0717), (-166.011, 52.6026),
(-166.849, 53.4818), (-167.397, 53.1612), (-168., 53.), (-168.827, 52.5955)])
zone2 = Polygon([(-170.725, 50.556), (-165.744, 50.8138), (-166., 52.3845), (-168.944, 51.7633)])
zone3 = Polygon([(-170.583, 52.8952), (-169.112, 52.7031), (-165.596, 53.9039),
(-164.854, 53.8886), (-164.317, 53.9718), (-163.523, 54.4418),
(-165.569, 54.9218), (-170.543, 53.0608)])
zone4 = Polygon([(-164.762, 53.7826), (-164.384, 52.8621), (-160.777, 53.7364), (-156.562, 55.4317),
(-156.648, 55.8754), (-159.271, 55.2198), (-160.37, 55.4383)])
zone5 = Polygon([(-155.522, 56.3125), (-155.291, 55.4781), (-150.449, 57.2113),
(-153.696, 57.4252), (-154.608, 56.3192), (-155.416, 56.3854)])
zone6 = Polygon([(-154.185, 60.3392), (-155.695, 58.4186), (-154.661, 58.4981),
(-153.529, 59.1074), (-152.894, 59.0815),
(-152.401, 60.6241), (-153.509, 60.5644), (-153.562, 60.2332)])
zone7 = Polygon([(-150.564, 61.7916), (-150.616, 60.8065), (-149.6, 60.87), (-149.879, 61.685)])
# zone8 = Polygon([(-151.4, 62.), (-150.95, 62.3837), (-151.48, 62.8187), (-152.058, 62.1726)])
# zone10 = Polygon([(-131.373, 52.037), (-130.826, 49.6386), (-129.953, 49.4524), (-129.435, 48.1776),
# (-127.072, 48.8121), (-128.597, 52.2638)])
zone_tensors = [[] for _ in range(nzones)]
for i in range(len(MomentTensors)):
if zone1.contains(Point(coords[i])):
if depth[i] < 75:
zone_tensors[0].append(MomentTensors[i])
elif zone2.contains(Point(coords[i])):
if depth[i] < 60:
zone_tensors[1].append(MomentTensors[i])
elif zone3.contains(Point(coords[i])):
if 175 > depth[i] > 65:
zone_tensors[2].append(MomentTensors[i])
elif zone4.contains(Point(coords[i])):
if depth[i] < 40:
zone_tensors[3].append(MomentTensors[i])
elif zone5.contains(Point(coords[i])):
if depth[i] < 40:
zone_tensors[4].append(MomentTensors[i])
elif zone6.contains(Point(coords[i])):
if depth[i] > 90:
zone_tensors[5].append(MomentTensors[i])
elif zone7.contains(Point(coords[i])):
if depth[i] < 70:
zone_tensors[6].append(MomentTensors[i])
# elif zone8.contains(Point(coords[i])):
# if 150 > depth[i] > 70:
# zone_tensors[7].append(MomentTensors[i])
# elif zone10.contains(Point(coords[i])):
# if depth[i] < 50:
# zone_tensors[8].append(MomentTensors[i])
for i in range(nzones):
print('Zone ', i + 1)
print('Number of tensors: ', len(zone_tensors[i]))
print('Cs: ', utilities.seismic_consistency(zone_tensors[i]))
zone_tensors_coords_2D = [[(mt.lon, mt.lat) for mt in tensors] for tensors in zone_tensors]
# zone_tensors_coords = [[utilities.spherical2cart(mt.pos) for mt in tensors] for tensors in zone_tensors]
zone_hulls_2D = [ConvexHull(zone_coords) for zone_coords in zone_tensors_coords_2D]
# zone_hulls = [ConvexHull(zone_coords) for zone_coords in zone_tensors_coords]
sum_mts = [utilities.tensor_sum_normalized(tensors) for tensors in zone_tensors]
princ_axes = [utilities.princax(tensor) for tensor in sum_mts]
print(princ_axes)
nodal_planes = [[mt2plane(mt).strike, mt2plane(mt).dip, mt2plane(mt).rake] for mt in sum_mts]
print(nodal_planes)
strikes = [plane[0] for plane in nodal_planes]
# data = []
usgs = pd.read_pickle("usgs_alaska_1900-2019_extracted.p")
# usgs = usgs.sort_values('magnitude')
usgs_mws = usgs[['magnitude']].to_numpy().flatten()
# pos = usgs[['depth', 'latitude', 'longitude']].to_numpy()
# plt.hist([mt.mw for mt in MomentTensors], np.arange(4, 10, 1))
# plt.show()
# stop
usgs_lats = usgs[['latitude']].to_numpy().flatten()
usgs_lons = usgs[['longitude']].to_numpy().flatten()
usgs_depths = usgs[['depth']].to_numpy().flatten()
usgs_times = usgs[['time']].to_numpy().flatten()
usgs_m0s = utilities.mw2m0(usgs_mws)
velocities = []
invariants = []
zones_lats = flatten([[mt.lat for mt in tensors] for tensors in zone_tensors])
zones_lons = flatten([[mt.lon for mt in tensors] for tensors in zone_tensors])
for i in range(len(zone_tensors)):
# X, Y, Z, area = utilities.planefit(zone_tensors[i])
m0_sum = 0
_, _, _, area = utilities.planefit(zone_tensors[i])
mu = 3.3e10
times = []
for j in range(len(usgs_m0s)):
if utilities.point_in_hull((usgs_lons[j], usgs_lats[j]), zone_hulls_2D[i]):
m0_sum += usgs_m0s[j]
times.append(usgs_times[j])
t = pd.Timedelta(max(times) - min(times)).value / 3.154e+16
print(m0_sum, area[0], t, len(times))
v = utilities.dynecm2nm(m0_sum) * 1e3 / (mu * area[0] * t)
if i == 2:
v *= 3
print(f'Velocity of zone {i + 1} is {v} mm/yr')
for _ in range(len(zone_tensors[i])):
velocities.append(v)
times = [mt.date for mt in zone_tensors[i]]
# print(max(times), min(times),
# (max(times) - min(times)).total_seconds())
t = (max(times) - min(times)).total_seconds() / 3.154e+7
tensor_sum = utilities.tensor_sum(zone_tensors[i])
eps = utilities.dynecm2nm(tensor_sum.mt_e) / (2 * mu * area[0] * 80e3)
J2 = utilities.second_invariant(eps)
print('2nd invariant: ', J2)
print(i + 1, 'volume', area[0] * 80 / 1e6)
for _ in range(len(zone_tensors[i])):
invariants.append(J2)
# stop
# xi = np.linspace(-172.6, -146.4, 30)
# yi = np.linspace(49.3, 62.8215)
# xi, yi = np.meshgrid(xi, yi)
#
# vi = griddata((zones_lons, zones_lats), invariants, (xi, yi), method='linear')
#
# fig = plt.figure()
# ax = fig.add_subplot(111)
# plt.contourf(xi, yi, vi)
# plt.colorbar()
# plt.show()
# points = np.row_stack([utilities.spherical2cart(mt.pos) for mt in zone_tensors[i]])
#
# trace1 = go.Scatter3d(
# x=-1 * points[:,0],
# y=points[:,1],
# z=points[:,2],
# mode='markers',
# marker=dict(size=4, color='red', line=dict(color='black', width=0.5), opacity=0.6)
# )
#
# trace3 = go.Surface(
# z=Z,
# x=-1 * X,
# y=Y,
# # colorscale='RdBu',
# showscale=False,
# opacity=0.6
# )
#
# data.append(trace1)
# data.append(trace3)
#
# layout = go.Layout(title='2nd order surface')
# fig = go.Figure(data=data, layout=layout)
# fig.show()
# stop
# srop
# MAP PLOT
# textcolors = ['r', 'm', 'g', 'b']
# colors = ['r--', 'm--', 'g--', 'b--']
# m = Basemap(projection='cyl',llcrnrlat=45,urcrnrlat=75,\
# llcrnrlon=-175,urcrnrlon=-120,resolution='h')
m = Basemap( #width=12000000, height=9000000,
rsphere=(6378137.00, 6356752.3142),
resolution='h', area_thresh=100., projection='lcc',
# lat_1=50., lat_2=60, lat_0=55, lon_0=-135.,
lat_0=63, lon_0=-147.,
llcrnrlat=45, llcrnrlon=-180, urcrnrlat=65, urcrnrlon=-100,
epsg=3338)
m.drawcoastlines()
m.fillcontinents()
# draw parallels and meridians.
# m.drawparallels(np.linspace(45, 75, 31), linewidth=0.5, labels=[False, True, True, False])
# m.drawmeridians(np.linspace(-175, -120, 56), linewidth=0.5, labels=[True, False, True, False])
m.drawparallels(np.arange(-80., 81., 10.), color='black', linewidth=0.5, labels=[False, True, True, False])
m.drawmeridians(np.arange(-180., 181., 10.), color='black', linewidth=0.5, labels=[True, False, True, False])
m.drawmapboundary(fill_color='aqua')
# x, y = m([MT.lon for MT in MomentTensors], [MT.lat for MT in MomentTensors])
# focmecs = [MT.mt6 for MT in MomentTensors]
# zone_tensors_flat = flatten(zone_tensors)
# x, y = m([MT.lon for MT in zone_tensors_flat], [MT.lat for MT in zone_tensors_flat])
# focmecs = [MT.mt6 for MT in zone_tensors_flat]
# depths_flat = [MT.depth for MT in zone_tensors_flat]
x, y = m([np.mean([mt.lon for mt in tensors]) for tensors in zone_tensors],
[np.mean([mt.lat for mt in tensors]) for tensors in zone_tensors])
focmecs = [mt.mt6 for mt in sum_mts]
depths_flat = [np.mean([mt.depth for mt in tensors]) for tensors in zone_tensors]
cmap = plt.cm.rainbow
norm = Normalize(vmin=np.min(depths_flat), vmax=np.max(depths_flat))
ax = plt.gca()
for i in range(len(focmecs)):
b = beach(focmecs[i], xy=(x[i], y[i]), width=100000, facecolor=cmap(norm(depths_flat[i])), linewidth=1)
b.set_zorder(10)
ax.add_collection(b)
# for j in range(len(distances)):
# ax.annotate(distances[j][i], xy=(x[i] + 0.1, y[i] - 0.1 + j * 0.1), color=textcolors[j])
for i in range(len(zone_tensors)):
lons, lats = [mt.lon for mt in zone_tensors[i]], [mt.lat for mt in zone_tensors[i]]
x, y = m(lons, lats)
x = np.array(x)
y = np.array(y)
m.plot(x[zone_hulls_2D[i].vertices.tolist() + [zone_hulls_2D[i].vertices.tolist()[0]]],
y[zone_hulls_2D[i].vertices.tolist() + [zone_hulls_2D[i].vertices.tolist()[0]]], '--', lw=3, label=f'Zone {i+1}')
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
plt.colorbar(sm, orientation='horizontal')
plt.legend(loc='lower right')
plt.show()