generated from databricks-industry-solutions/industry-solutions-blueprints
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path01a_chronos_load_inference.py
540 lines (417 loc) · 21.2 KB
/
01a_chronos_load_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# Databricks notebook source
# MAGIC %md
# MAGIC This is an example notebook that shows how to use [chronos](https://github.com/amazon-science/chronos-forecasting/tree/main) models on Databricks. The notebook loads the model, distributes the inference, registers the model, deploys the model and makes online forecasts.
# COMMAND ----------
# MAGIC %md
# MAGIC ## Cluster setup
# MAGIC
# MAGIC We recommend using a cluster with [Databricks Runtime 14.3 LTS for ML](https://docs.databricks.com/en/release-notes/runtime/14.3lts-ml.html) or above. The cluster can be single-node or multi-node with one or more GPU instances on each worker: e.g. [g5.12xlarge [A10G]](https://aws.amazon.com/ec2/instance-types/g5/) on AWS or [Standard_NV72ads_A10_v5](https://learn.microsoft.com/en-us/azure/virtual-machines/nva10v5-series) on Azure. This notebook will leverage [Pandas UDF](https://docs.databricks.com/en/udf/pandas.html) for distributing the inference tasks and utilizing all the available resource.
# COMMAND ----------
# MAGIC %md
# MAGIC ## Install package
# COMMAND ----------
# MAGIC %pip install chronos-forecasting --quiet
# MAGIC dbutils.library.restartPython()
# COMMAND ----------
# MAGIC %md
# MAGIC ## Prepare data
# MAGIC We use [`datasetsforecast`](https://github.com/Nixtla/datasetsforecast/tree/main/) package to download M4 data. M4 dataset contains a set of time series which we use for testing. See the `data_preparation` notebook for a number of custom functions we wrote to convert M4 time series to an expected format.
# MAGIC
# MAGIC Make sure that the catalog and the schema already exist.
# COMMAND ----------
catalog = "tsfm" # Name of the catalog we use to manage our assets
db = "m4" # Name of the schema we use to manage our assets (e.g. datasets)
n = 100 # Number of time series to sample
# COMMAND ----------
# This cell runs the notebook ../data_preparation and creates the following tables with M4 data:
# 1. {catalog}.{db}.m4_daily_train
# 2. {catalog}.{db}.m4_monthly_train
dbutils.notebook.run("./99_data_preparation", timeout_seconds=0, arguments={"catalog": catalog, "db": db, "n": n})
# COMMAND ----------
from pyspark.sql.functions import collect_list
# Make sure that the data exists
df = spark.table(f'{catalog}.{db}.m4_daily_train')
df = df.groupBy('unique_id').agg(collect_list('ds').alias('ds'), collect_list('y').alias('y'))
display(df)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Distribute Inference
# MAGIC We use [Pandas UDF](https://docs.databricks.com/en/udf/pandas.html#iterator-of-series-to-iterator-of-series-udf) to distribute the inference.
# COMMAND ----------
import pandas as pd
import numpy as np
import torch
from typing import Iterator
from pyspark.sql.functions import pandas_udf
# Function to create a Pandas UDF to generate horizon timestamps
def create_get_horizon_timestamps(freq, prediction_length):
"""
Creates a Pandas UDF to generate future timestamps based on the given frequency and prediction length.
Parameters:
freq (str): Frequency of the timestamps ('M' for month-end, otherwise daily).
prediction_length (int): Number of future timestamps to generate.
Returns:
function: A Pandas UDF that generates an array of future timestamps for each input time series.
"""
@pandas_udf('array<timestamp>')
def get_horizon_timestamps(batch_iterator: Iterator[pd.Series]) -> Iterator[pd.Series]:
# Determine the offset for the next timestamp based on the frequency
one_ts_offset = pd.offsets.MonthEnd(1) if freq == "M" else pd.DateOffset(days=1)
barch_horizon_timestamps = [] # List to hold the arrays of future timestamps
# Iterate over batches of input time series
for batch in batch_iterator:
for series in batch:
timestamp = last = series.max() # Get the last timestamp in the series
horizon_timestamps = [] # List to hold future timestamps for the current series
# Generate future timestamps
for i in range(prediction_length):
timestamp = timestamp + one_ts_offset
horizon_timestamps.append(timestamp.to_numpy())
barch_horizon_timestamps.append(np.array(horizon_timestamps))
yield pd.Series(barch_horizon_timestamps) # Yield the result as a Pandas Series
return get_horizon_timestamps
# Function to create a Pandas UDF to generate forecasts
def create_forecast_udf(repository, prediction_length, num_samples, batch_size):
"""
Creates a Pandas UDF to generate forecasts using a pretrained model from the given repository.
Parameters:
repository (str): Path or identifier for the model repository.
prediction_length (int): Number of future values to predict.
num_samples (int): Number of samples to generate for each prediction.
batch_size (int): Number of time series to process in each batch.
Returns:
function: A Pandas UDF that generates an array of forecasted values for each input time series.
"""
@pandas_udf('array<double>')
def forecast_udf(bulk_iterator: Iterator[pd.Series]) -> Iterator[pd.Series]:
# Initialization step
import numpy as np
import pandas as pd
import torch
from chronos import BaseChronosPipeline
# Load the pretrained model from the repository
pipeline = BaseChronosPipeline.from_pretrained(
repository, # use "amazon/chronos-bolt-small" for the corresponding Chronos-Bolt model
device_map="cuda", # use "cpu" for CPU inference
torch_dtype=torch.bfloat16,
)
# Inference step
for bulk in bulk_iterator:
median = [] # List to hold the median forecast for each series
# Process the time series in batches
for i in range(0, len(bulk), batch_size):
batch = bulk[i:i+batch_size]
contexts = [torch.tensor(list(series)) for series in batch] # Convert series to tensors
# Generate forecasts using the pretrained model
forecasts = pipeline.predict(context=contexts, prediction_length=prediction_length, num_samples=num_samples)
# Calculate the median forecast for each series
median.extend([np.median(forecast, axis=0) for forecast in forecasts])
yield pd.Series(median) # Yield the result as a Pandas Series
return forecast_udf
# COMMAND ----------
# MAGIC %md
# MAGIC We specify the requirements for our forecasts.
# COMMAND ----------
chronos_model = "chronos-t5-tiny" # Alternatively: chronos-t5-mini, chronos-t5-small, chronos-t5-base, chronos-t5-large
prediction_length = 10 # Time horizon for forecasting
num_samples = 10 # Number of forecast to generate. We will take median as our final forecast.
batch_size = 4 # Number of time series to process simultaneously
freq = "D" # Frequency of the time series
device_count = torch.cuda.device_count() # Number of GPUs available
# COMMAND ----------
# MAGIC %md
# MAGIC Let's generate the forecasts.
# COMMAND ----------
# Create a Pandas UDF to generate horizon timestamps with the specified frequency and prediction length
get_horizon_timestamps = create_get_horizon_timestamps(freq=freq, prediction_length=prediction_length)
# Create a Pandas UDF to generate forecasts using a pretrained model from the specified repository
forecast_udf = create_forecast_udf(
repository=f"amazon/{chronos_model}", # Model repository path or identifier
prediction_length=prediction_length, # Number of future values to predict
num_samples=num_samples, # Number of samples to generate for each prediction
batch_size=batch_size, # Number of time series to process in each batch
)
# Apply the UDFs to the DataFrame and select the relevant columns
forecasts = df.repartition(device_count).select(
df.unique_id, # Select the unique identifier for each time series
get_horizon_timestamps(df.ds).alias("ds"), # Generate and alias the horizon timestamps for each series
forecast_udf(df.y).alias("forecast") # Generate and alias the forecasted values for each series
)
# Display the resulting DataFrame containing the forecasts
display(forecasts)
# COMMAND ----------
# MAGIC %md
# MAGIC ##Register Model
# MAGIC We will package our model using [`mlflow.pyfunc.PythonModel`](https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html) and register this in Unity Catalog.
# COMMAND ----------
import mlflow
import torch
import torchvision
import cloudpickle
import transformers
import numpy as np
from mlflow.models.signature import ModelSignature
from mlflow.types import DataType, Schema, TensorSpec
# Set the MLflow registry URI to use Databricks Unity Catalog
mlflow.set_registry_uri("databricks-uc")
experiment_name = "/Shared/chronos/"
# Define a custom MLflow model class for the Chronos pipeline
class ChronosModel(mlflow.pyfunc.PythonModel):
def __init__(self, repository):
import torch
from chronos import BaseChronosPipeline
# Initialize the ChronosPipeline with a pretrained model from the specified repository
self.pipeline = BaseChronosPipeline.from_pretrained(
repository, # use "amazon/chronos-bolt-small" for the corresponding Chronos-Bolt model
device_map="cuda", # use "cpu" for CPU inference
torch_dtype=torch.bfloat16,
)
def predict(self, context, input_data, params=None):
# Convert input data to a list of PyTorch tensors
history = [torch.tensor(list(series)) for series in input_data]
# Generate forecasts using the ChronosPipeline
forecast = self.pipeline.predict(
context=history,
prediction_length=10, # Length of the prediction horizon
num_samples=10, # Number of samples to generate
)
return forecast.numpy() # Convert the forecast to a NumPy array
# Instantiate the custom model with the specified repository
pipeline = ChronosModel(f"amazon/{chronos_model}")
# Define the input and output schema for the model signature
input_schema = Schema([TensorSpec(np.dtype(np.double), (-1, -1))]) # Input: 2D array of doubles
output_schema = Schema([TensorSpec(np.dtype(np.uint8), (-1, -1, -1))]) # Output: 3D array of unsigned 8-bit integers
signature = ModelSignature(inputs=input_schema, outputs=output_schema)
# Create an example input for the model (1 sample, 52 features)
input_example = np.random.rand(1, 52)
# Define the registered model name in the format: catalog.database.model_name
registered_model_name = f"{catalog}.{db}.{chronos_model}"
# set current experiment
mlflow.set_experiment(experiment_name)
# Log and register the model with MLflow
with mlflow.start_run() as run:
mlflow.pyfunc.log_model(
"model", # Model artifact path
python_model=pipeline, # Custom model class instance
registered_model_name=registered_model_name, # Name to register the model under
signature=signature, # Model signature
input_example=input_example, # Example input
pip_requirements=[ # List of pip requirements
"torch==" + torch.__version__.split("+")[0],
"torchvision==" + torchvision.__version__.split("+")[0],
"transformers==" + transformers.__version__,
"cloudpickle==" + cloudpickle.__version__,
"chronos-forecasting",
],
)
# COMMAND ----------
# MAGIC %md
# MAGIC ##Reload Model
# MAGIC Once the registration is complete, we will reload the model and generate forecasts.
# COMMAND ----------
from mlflow import MlflowClient
client = MlflowClient()
# Function to get the latest version of a registered model
def get_latest_model_version(client, registered_model_name):
latest_version = 1 # Initialize the latest version to 1
# Iterate through all model versions for the given registered model name
for mv in client.search_model_versions(f"name='{registered_model_name}'"):
version_int = int(mv.version) # Convert version string to integer
# Update the latest version if a higher version is found
if version_int > latest_version:
latest_version = version_int
return latest_version # Return the latest version number
# Get the latest version of the specified registered model
model_version = get_latest_model_version(client, registered_model_name)
# Construct the model URI using the registered model name and its latest version
logged_model = f"models:/{registered_model_name}/{model_version}"
# Load the model as a PyFuncModel from the specified URI
loaded_model = mlflow.pyfunc.load_model(logged_model)
# Create random input data (5 samples, each with 52 data points)
input_data = np.random.rand(5, 52) # (batch, series)
# Generate forecasts using the loaded model
loaded_model.predict(input_data)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Deploy Model
# MAGIC We will deploy our model behind a real-time endpoint of [Databricks Mosaic AI Model Serving](https://www.databricks.com/product/model-serving).
# COMMAND ----------
# With the token, you can create our authorization header for our subsequent REST calls
token = dbutils.notebook.entry_point.getDbutils().notebook().getContext().apiToken().getOrElse(None)
headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}
# Next you need an endpoint at which to execute your request which you can get from the notebook's tags collection
java_tags = dbutils.notebook.entry_point.getDbutils().notebook().getContext().tags()
# This object comes from the Java CM - Convert the Java Map opject to a Python dictionary
tags = sc._jvm.scala.collection.JavaConversions.mapAsJavaMap(java_tags)
# Lastly, extract the Databricks instance (domain name) from the dictionary
instance = tags["browserHostName"]
# COMMAND ----------
import requests
model_serving_endpoint_name = chronos_model
# auto_capture_config specifies where the inference logs should be written
my_json = {
"name": model_serving_endpoint_name,
"config": {
"served_models": [
{
"model_name": registered_model_name,
"model_version": model_version,
"workload_type": "GPU_SMALL",
"workload_size": "Small",
"scale_to_zero_enabled": "true",
}
],
"auto_capture_config": {
"catalog_name": catalog,
"schema_name": db,
"table_name_prefix": model_serving_endpoint_name,
},
},
}
# Make sure to drop the inference table of it exists
_ = spark.sql(
f"DROP TABLE IF EXISTS {catalog}.{db}.`{model_serving_endpoint_name}_payload`"
)
# COMMAND ----------
# Function to create an endpoint in Model Serving and deploy the model behind it
def func_create_endpoint(model_serving_endpoint_name):
# get endpoint status
endpoint_url = f"https://{instance}/api/2.0/serving-endpoints"
url = f"{endpoint_url}/{model_serving_endpoint_name}"
r = requests.get(url, headers=headers)
if "RESOURCE_DOES_NOT_EXIST" in r.text:
print(
"Creating this new endpoint: ",
f"https://{instance}/serving-endpoints/{model_serving_endpoint_name}/invocations",
)
re = requests.post(endpoint_url, headers=headers, json=my_json)
else:
new_model_version = (my_json["config"])["served_models"][0]["model_version"]
print(
"This endpoint existed previously! We are updating it to a new config with new model version: ",
new_model_version,
)
# update config
url = f"{endpoint_url}/{model_serving_endpoint_name}/config"
re = requests.put(url, headers=headers, json=my_json["config"])
# wait till new config file in place
import time, json
# get endpoint status
url = f"https://{instance}/api/2.0/serving-endpoints/{model_serving_endpoint_name}"
retry = True
total_wait = 0
while retry:
r = requests.get(url, headers=headers)
assert (
r.status_code == 200
), f"Expected an HTTP 200 response when accessing endpoint info, received {r.status_code}"
endpoint = json.loads(r.text)
if "pending_config" in endpoint.keys():
seconds = 10
print("New config still pending")
if total_wait < 6000:
# if less the 10 mins waiting, keep waiting
print(f"Wait for {seconds} seconds")
print(f"Total waiting time so far: {total_wait} seconds")
time.sleep(10)
total_wait += seconds
else:
print(f"Stopping, waited for {total_wait} seconds")
retry = False
else:
print("New config in place now!")
retry = False
assert (
re.status_code == 200
), f"Expected an HTTP 200 response, received {re.status_code}"
# Function to delete the endpoint from Model Serving
def func_delete_model_serving_endpoint(model_serving_endpoint_name):
endpoint_url = f"https://{instance}/api/2.0/serving-endpoints"
url = f"{endpoint_url}/{model_serving_endpoint_name}"
response = requests.delete(url, headers=headers)
if response.status_code != 200:
raise Exception(
f"Request failed with status {response.status_code}, {response.text}"
)
else:
print(model_serving_endpoint_name, "endpoint is deleted!")
return response.json()
# COMMAND ----------
# Create an endpoint. This may take some time.
func_create_endpoint(model_serving_endpoint_name)
# COMMAND ----------
import time, mlflow
def wait_for_endpoint():
# Construct the base URL for the serving endpoints API
endpoint_url = f"https://{instance}/api/2.0/serving-endpoints"
while True:
# Construct the URL for the specific model serving endpoint
url = f"{endpoint_url}/{model_serving_endpoint_name}"
# Send a GET request to the endpoint URL
response = requests.get(url, headers=headers)
# Assert that the response status code is 200 (OK)
assert (
response.status_code == 200
), f"Expected an HTTP 200 response, received {response.status_code}\n{response.text}"
# Extract the status of the endpoint from the response
status = response.json().get("state", {}).get("ready", {})
# If the endpoint is ready, print the status and return
if status == "READY":
print(status)
print("-" * 80)
return
else:
# If the endpoint is not ready, print the status and wait for 5 minutes
print(f"Endpoint not ready ({status}), waiting 5 minutes")
time.sleep(300) # Wait 300 seconds (5 minutes)
# Get the API URL for the Databricks instance
api_url = mlflow.utils.databricks_utils.get_webapp_url()
# Call the function to wait for the endpoint to be ready
wait_for_endpoint()
# COMMAND ----------
# MAGIC %md
# MAGIC ## Online Forecast
# MAGIC Once the endpoint is ready, let's send a request to the model and generate an online forecast.
# COMMAND ----------
import os
import requests
import pandas as pd
import json
import matplotlib.pyplot as plt
# Replace URL with the endpoint invocation URL you get from the Model Serving page.
endpoint_url = f"https://{instance}/serving-endpoints/{model_serving_endpoint_name}/invocations"
# Get the Databricks API token
token = dbutils.notebook.entry_point.getDbutils().notebook().getContext().apiToken().get()
# Define a function to send input data to the model serving endpoint and get the forecast
def forecast(input_data, url=endpoint_url, databricks_token=token):
# Set up the headers for the POST request, including the authorization token
headers = {
"Authorization": f"Bearer {databricks_token}",
"Content-Type": "application/json",
}
# Prepare the body of the request with the input data
body = {"inputs": input_data.tolist()}
# Convert the body to a JSON string
data = json.dumps(body)
# Send a POST request to the model serving endpoint
response = requests.request(method="POST", headers=headers, url=url, data=data)
# Check if the response status code is not 200 (OK)
if response.status_code != 200:
# Raise an exception if the request failed
raise Exception(
f"Request failed with status {response.status_code}, {response.text}"
)
# Return the response JSON as a Python dictionary
return response.json()
# COMMAND ----------
# Send request to the endpoint
input_data = np.random.rand(5, 52) # (batch, series)
forecast(input_data)
# COMMAND ----------
# Delete the serving endpoint
func_delete_model_serving_endpoint(model_serving_endpoint_name)
# COMMAND ----------
# MAGIC %md
# MAGIC © 2024 Databricks, Inc. All rights reserved.
# MAGIC
# MAGIC The sources in all notebooks in this directory and the sub-directories are provided subject to the Databricks License. All included or referenced third party libraries are subject to the licenses set forth below.