-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path99_init.py
72 lines (59 loc) · 3.17 KB
/
99_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Databricks notebook source
dbutils.widgets.text("reset_all_data", "false", "Reset Data")
reset_all_data = dbutils.widgets.get("reset_all_data") == "true"
# COMMAND ----------
from pyspark.sql.functions import pandas_udf
import pandas as pd
import pyspark.sql.functions as F
from pyspark.sql.functions import col, udf, length, pandas_udf
import os
import mlflow
import yaml
from typing import Iterator
from mlflow import MlflowClient
mlflow.set_registry_uri('databricks-uc')
# Set up logging
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logging.getLogger("py4j.java_gateway").setLevel(logging.ERROR)
logging.getLogger("py4j.clientserver").setLevel(logging.ERROR)
logging.getLogger('mlflow').setLevel(logging.ERROR) # Disable MLflow warnings
from urllib3.connectionpool import log as urllib3_log
urllib3_log.setLevel(logging.ERROR)
# Workaround for a bug fix that is in progress
mlflow.spark.autolog(disable=True)
import warnings
warnings.filterwarnings("ignore")
# COMMAND ----------
if reset_all_data:
print(f'clearing up schema {config.CATALOG}.{config.SCHEMA}')
_ = spark.sql(f"DROP DATABASE IF EXISTS `{config.CATALOG}.{config.SCHEMA}` CASCADE")
# COMMAND ----------
def use_and_create_db(CATALOG, SCHEMA, cloud_storage_path = None):
print(f"USE CATALOG `{CATALOG}`")
_ = spark.sql(f"USE CATALOG `{CATALOG}`")
_ = spark.sql(f"""CREATE DATABASE IF NOT EXISTS `{SCHEMA}` """)
#If the catalog is defined, we force it to the given value and throw exception if not.
if len(config.CATALOG) > 0:
current_catalog = spark.sql("SELECT current_catalog()").collect()[0]['current_catalog()']
if current_catalog != config.CATALOG:
catalogs = [r['catalog'] for r in spark.sql("SHOW CATALOGS").collect()]
if config.CATALOG not in catalogs:
_ = spark.sql(f"CREATE CATALOG IF NOT EXISTS {config.CATALOG}")
use_and_create_db(config.CATALOG, config.SCHEMA)
print(f"using catalog.database `{config.CATALOG}`.`{config.SCHEMA}`")
_ = spark.sql(f"""USE `{config.CATALOG}`.`{config.SCHEMA}`""")
# COMMAND ----------
if not spark.catalog.tableExists(config.SOURCE_TABLE_FULLNAME) or spark.table(config.SOURCE_TABLE_FULLNAME).isEmpty() or \
not spark.catalog.tableExists(config.EVALUATION_TABLE_FULLNAME) or spark.table(config.EVALUATION_TABLE_FULLNAME).isEmpty():
_ = spark.sql(f'''CREATE TABLE IF NOT EXISTS {config.SOURCE_TABLE_FULLNAME} (
id BIGINT GENERATED BY DEFAULT AS IDENTITY,
url STRING,
content STRING
) TBLPROPERTIES (delta.enableChangeDataFeed = true)''')
(spark.createDataFrame(pd.read_parquet('https://notebooks.databricks.com/demos/dbdemos-dataset/llm/databricks-documentation/databricks_documentation.parquet'))
.drop('title').write.mode('overwrite').saveAsTable(config.SOURCE_TABLE_FULLNAME))
(spark.createDataFrame(pd.read_parquet('https://notebooks.databricks.com/demos/dbdemos-dataset/llm/databricks-documentation/databricks_doc_eval_set.parquet'))
.write.mode('overwrite').saveAsTable(config.EVALUATION_TABLE_FULLNAME))
# Make sure enableChangeDataFeed is enabled
_ = spark.sql('ALTER TABLE databricks_documentation SET TBLPROPERTIES (delta.enableChangeDataFeed = true)')